DOI QR코드

DOI QR Code

Analysis and Design of Si3N4 Rib-optical Waveguides for Evanescent-wave Integrated-optical Biosensors

소산파 집적광학 바이오센서에 적합한 Si3N4 립-광도파로 해석 및 설계에 관한 연구

  • Jung, Hongsik (Department of Electronics & Electrical Convergence Engineering, College of Science & Technology, Hongik University)
  • 정홍식 (홍익대학교 전자전기융합공학과)
  • Received : 2018.11.20
  • Accepted : 2018.12.14
  • Published : 2019.02.25

Abstract

$Si_3N_4$ rib-optical waveguides for evanescent-wave integrated-optical biosensors were analytically interpreted, to derive the single-mode propagation conditions. The integrated-optical biosensor structure based on two-mode interference was proposed, and the rib width and thickness and core thickness for a single-mode and two-mode waveguide (sensing region) were proposed to be $3{\mu}m$, 2 nm, and 150 nm and $3{\mu}m$, 20 nm, and 340 nm respectively. The optical characteristics of each guided-wave mode were investigated utilizing the film mode-matching (FMM) analysis.

소산파 기반 집적광학 바이오센서에 적합한 $Si_3N_4$ 립-광도파로 구조에 대한 해석적 분석을 통해서 단일모드 도파조건을 도출하였다. 두-모드 간섭현상을 이용하는 집적광학 바이오센서 구조를 제시하고, 단일모드와 두-모드(감지영역)에 해당되는 립-광도파로 제원인 폭, 립 및 코어 두께 각각에 대해서 $3{\mu}m$, 2 nm, 150 nm와 $3{\mu}m$, 20 nm, 340 nm를 제안하였으며, FMM 전산해석을 통해서 감지영역의 두-모드들에 대한 광학적 특성들을 검토하였다.

Keywords

KGHHBU_2019_v30n1_15_f0001.png 이미지

Fig. 1. Cross-section of rib-optical waveguide for analytical inter-pretation.

KGHHBU_2019_v30n1_15_f0002.png 이미지

Fig. 2. Cross-section of Si3N4 rib-optical waveguide with refractive indices and dimension for computational optical-mode analysis.

KGHHBU_2019_v30n1_15_f0003.png 이미지

Fig. 3. Effective refractive indices as a function of rib-optical waveguide width for (a) T = 10 nm, (b) T = 20 nm, (c) T = 30 nm.

KGHHBU_2019_v30n1_15_f0004.png 이미지

Fig. 4. Effective refractive indices as a function of rib-optical waveguide thickness for (a) W = 3 µm, (b) W = 5 µm, (c) W = 10 µm.

KGHHBU_2019_v30n1_15_f0005.png 이미지

Fig. 5. Effective refractive indices as a function of rib-optical waveguide core thickness for (a) W = 4 µm, T = 2 nm (b) W = 10 µm, T =10 nm (c) W = 10 µm, T = 50 nm.

KGHHBU_2019_v30n1_15_f0007.png 이미지

Fig. 7. Effective refractive indices as a function of rib-optical waveguide width for TE00, TE01, and TE02 mode, respectively.

KGHHBU_2019_v30n1_15_f0008.png 이미지

Fig. 8. Effective refractive indices as a function of rib-optical waveguide (two-mode region) width for TE00, TE01, and TE02 mode, respectively.

KGHHBU_2019_v30n1_15_f0009.png 이미지

Fig. 11. Longitudinal cross-section with refractive-indices and layer thickness for proposed two-mode, integrated-optical biosensor utilizing Si3N4 rib-optical waveguides.

KGHHBU_2019_v30n1_15_f0010.png 이미지

Fig. 6. Schematic of an integrated-optic, evanescent-wave biosensor based on rib-optical waveguides and two-mode interferometer.

KGHHBU_2019_v30n1_15_f0011.png 이미지

Fig. 9. (a) Planar intensity distribution, (b) three-dimensional intensity distribution, (c) horizontal and (d) vertical distribution of Ex-field intensity for the fundamental-mode of two-mode, rib-optical waveguide.

KGHHBU_2019_v30n1_15_f0012.png 이미지

Fig. 10. (a) Planar intensity distribution, (b) three-dimensional intensity distribution, (c) horizontal and (d) vertical distribution of Ex-field intensity for the first high-order mode of two-mode, rib-optical waveguide.

References

  1. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, "Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line," IEEE Photon. J. 5, 2202809-2202809 (2013). https://doi.org/10.1109/JPHOT.2013.2292698
  2. P. Muellner, E, Melnik, G. Koppitsch, J. Kraft, F Schrank, and R. Hainberger, "CMOS-compatible Si3N4 waveguides for optical biosensing," Procedia Eng. 120, 578-581 (2015). https://doi.org/10.1016/j.proeng.2015.08.728
  3. J.-C. Tinguely, O. I. Helle, and B. S. Ahluwalia, "Silicon nitride waveguide platform for fluorescence microscopy of living cells," Opt. Express 25, 27678-27690 (2017). https://doi.org/10.1364/OE.25.027678
  4. A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, "Silicon-nitride waveguides for on-chip Raman spectroscopy," Proc. SPIE 9141, 91411C (2014).
  5. G. Vurtsever, P. Dumon, W. Bogaerts, and R. Baets, "Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography," Proc. SPIE 7554, 75514B (2010).
  6. F. T. Dullo, S. Lindecrantz, J. Jagerska, J. H. Hansen, M. Engqvist, S. A. Solbo, and O. G. Helleso, "Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer," Opt. Express 23, 31564-31573 (2015). https://doi.org/10.1364/OE.23.031564
  7. H. Jung, "A study on the normalized analysis of sensitivity optimization of evanescent-field, integrated-optic biosensor based on planar optical waveguide," J. Sensor Sci. Technol. 27, 25-30 (2018). https://doi.org/10.5369/JSST.2018.27.1.25
  8. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonator via atomic layer deposition," Opt. Express 20, 27661-27669 (2012). https://doi.org/10.1364/OE.20.027661
  9. Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, "Design and optimization of optical modulators based on graphene-on-silicon nitride micro-ring resonators," J. Opt. 19, 045801 (2017). https://doi.org/10.1088/2040-8986/19/4/045801
  10. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, "Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip," Photon. Res. 3, B47-B59 (2015). https://doi.org/10.1364/PRJ.3.000B47
  11. F. T. Dullo and O. G. Helleso, "On-chip phase measurement for micro-particles trapped on a waveguide," Lab Chip 15, 3918-3924 (2015). https://doi.org/10.1039/C5LC00794A
  12. R. A. Soref, J. Schmidtchen, and K. Peterman, "Large single-mode rib waveguides in GeSi-Si and Si-on-$SiO_2$, IEEE J. Quantum Electron. 27, 1971-1974 (1991). https://doi.org/10.1109/3.83406
  13. S. P. Pogossian, L. Vescan, and A. Vonsovici, "The singlemode condition for semiconductor rib waveguides with large cross section," J. Lightw. Technol. 16, 1851-1853 (1998). https://doi.org/10.1109/50.721072
  14. J. Schmidtchen, A. Splett, B. Schoppert, and K Pertermann, "Low loss single mode optical waveguides with large cross-selection in silicon-on-insulator," Electron. Lett. 27, 1486-1487 (1991). https://doi.org/10.1049/el:19910930
  15. Photon Design Ltd, FIMMWAVE v6.6.0, Oxford United Kingdom.
  16. K. E. Zinoviev, A. B. Gonzalez-Guerrero, C. Dominguez, and L. M. Lechuga, "Integrated bimodal waveguide interferometric biosensor for label-free analysis," J. Lightw. Technol. 29, 1926-1930 (2011). https://doi.org/10.1109/JLT.2011.2150734
  17. D. Duval, "Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers," Lab Chip 12, 1987-1994 (2012). https://doi.org/10.1039/c2lc40054e