DOI QR코드

DOI QR Code

Korean License Plate Recognition Using CNN

CNN 기반 한국 번호판 인식

  • Received : 2019.12.16
  • Accepted : 2019.12.26
  • Published : 2019.12.31

Abstract

The Automatic Korean license plate recognition (AKLPR) is used in many fields. For many applications, high recognition rate and fast processing speed of ALPR are important. Recent advances in deep learning have improved the accuracy and speed of object detection and recognition, and CNN (Convolutional Neural Network) has been applied to ALPR. The ALPR is divided into the stage of detecting the LP region and the stage of detecting and recognizing the character in the LP region, and each step is implemented with separate CNN. In this paper, we propose a single stage CNN architecture to recognize license plate characters at high speed while keeping high recognition rate.

자동 한국 번호판 인식 (AKLPR)은 많은 분야에서 사용된다. 이러한 응용 분야에서 ALPR은 높은 인식률과 빠른 처리 속도가 중요하다. 최근 딥러닝의 발전으로 객체 감지 및 인식의 정확도와 속도가 향상 되고 있으며, 그 결과 딥러닝이 ALPR에 적용되고 있다. 특히 합성곱신경망(Convolutional Neural Network) 기반 객체 검출기가 ALPR에 적용되었다. 이러한 ALPR은 LP 영역을 검출하는 단계와 LP 영역의 문자를 검출 및 인식하는 단계로 구분되며, 각 단계는 별도의 CNN으로 구현된다. 본 논문에서는 단일 단계 CNN으로 ALPR을 구현하는 아키텍처를 제안한다. 제안하는 방법은 높은 인식률을 유지하면서 빠른 속도로 번호판 문자를 인식한다.

Keywords

References

  1. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.39, No.6, pp.1137-1149, 2017. DOI: 10.1109/TPAMI.2016.2577031
  2. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only Look Once: Unified, Real-time Object Detection," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.779-788, 2016. DOI: 10.1109/CVPR.2016.91
  3. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, et al., "Ssd: Single Shot Multibox Detector," Proceeding of European Conference on Computer Vision, pp.21-37, 2016. DOI: 10.1007/978-3-319-46448-0_2
  4. J. Redmon and A. Farhadi, "Yolo9000: Better, Faster, Stronger," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.6517-6525, 2017. DOI: 10.1109/CVPR.2017.690
  5. K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778, 2016. DOI: 10.1109/CVPR.2016.90
  6. T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal Loss for Dense Object Detection," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp.2999-3007, 2017.
  7. Q. H. Tang, S. Yeon, and J. Kim, "Deep Learning based Object Detector for Vehicle Recognition on Images Acquired with Fisheye Lens Camera," Journal of Korea Multimedia Society, Vol.22, No.2, pp.128-135, 2018. DOI: 10.9717/kmms.2019.22.2.128
  8. L. Rayson,, "YOLOv3(2018)", https://pjreddie.com/publications/
  9. L. Rayson, E. Severo, L. A. Oliveira, G. R. Goncalves, W. R. Schwartz, and D. Menotti, "A Robust Real-Time Automatic License Plate Recognition Based on the YOLO Detector," 2018 International Joint Conference on Neural Networks (IJCNN), pp.1-10, 2018. DOI: 10.1109/IJCNN.2018.8489629