Abstract
The Automatic Korean license plate recognition (AKLPR) is used in many fields. For many applications, high recognition rate and fast processing speed of ALPR are important. Recent advances in deep learning have improved the accuracy and speed of object detection and recognition, and CNN (Convolutional Neural Network) has been applied to ALPR. The ALPR is divided into the stage of detecting the LP region and the stage of detecting and recognizing the character in the LP region, and each step is implemented with separate CNN. In this paper, we propose a single stage CNN architecture to recognize license plate characters at high speed while keeping high recognition rate.
자동 한국 번호판 인식 (AKLPR)은 많은 분야에서 사용된다. 이러한 응용 분야에서 ALPR은 높은 인식률과 빠른 처리 속도가 중요하다. 최근 딥러닝의 발전으로 객체 감지 및 인식의 정확도와 속도가 향상 되고 있으며, 그 결과 딥러닝이 ALPR에 적용되고 있다. 특히 합성곱신경망(Convolutional Neural Network) 기반 객체 검출기가 ALPR에 적용되었다. 이러한 ALPR은 LP 영역을 검출하는 단계와 LP 영역의 문자를 검출 및 인식하는 단계로 구분되며, 각 단계는 별도의 CNN으로 구현된다. 본 논문에서는 단일 단계 CNN으로 ALPR을 구현하는 아키텍처를 제안한다. 제안하는 방법은 높은 인식률을 유지하면서 빠른 속도로 번호판 문자를 인식한다.