References
- Muhammad Hassan, Muhammad Umar, and Amine Bermak, "Computationally efficient weighted binary decision codes for gas identification with array of gas sensors," IEEE Sensors Journal, vol.17, no.2, pp.487-497, 2017. DOI: 10.1109/JSEN.2016.2631476
- Woojae Jeong, Minwoo Kim, Jaechan Cho, Yunho Jung, "Design of gas classifier based on artificial neural network," Journal of IKEEE, vol.22, no.3, pp.700-705, 2018. DOI: 10.7471/ikeee.2018.22.3.700
- Jingli Yang, Zhen Sun, and Yinsheng Chen, "Fault detection using the clustering-kNN rule for gas sensor arrays," Sensors, vol.16, pp.1-21, 2016. DOI: 10.3390/s16122069
- Muhammad Hassan, Amine Bermak, "Gas classification using binary decision tree classifier," IEEE International Symposium on Circuits and System (ISCAS), pp.2579-2582, 2014. DOI: 10.1109/ISCAS.2014.6865700
- Xiaojun Zhai, Amine Ait Si Ali, Abbes Amira, and Faycal Bensaali, "MLP neural network based gas classification system on zynq soc," IEEE Access, vol.4, pp.8138-8146, 2016. DOI: 10.1109/ACCESS.2016.2619181
- Kun Wang, Wenbin Ye, Xiaojin Zhao, and Xiaofang Pan, "A support vector machine-based genetic algorithm method for gas classification," International Conference on Frontiers of Sensors Technologies (ICFST), pp.363-366, 2017.
- Bernhard E, Boser, Isabelle M. Guyon, and Vladimir N. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 5th Annu. Workshop Computational Learning Theory, Pittsburgh, Pennsylvania, USA, pp.144-152, 1992. DOI: 10.1145/130385.130401
- Edgar Elias Osuna, Robert M. Freund, Federico Girosi, "An improved training algorithm for support vector machines," in Proc. IEEE Signal Processing Society Workshop, pp.276-285, 1997. DOI: 10.1109/NNSP.1997.622408
- T. Joachims, "Making large-scale SVM learning practical," in Advances in Kernel Methods, B. Scholkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA, USA, MIT Press, 1998. DOI: 10.1.1.62.2274
- D. DeCoste and B. Scholkopf, "Training invariant support vector machines," Machine Learn, vol.46, no.1, pp.161-190, 2002. DOI: 10.1023/A:1012454411458
- S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. Murthy, "A fast iterative nearest point algorithm for support vector machine classifier design," IEEE Trans. Neural Network, vol.11, no.1, pp.124-136, 2000. DOI: 10.1109/72.822516
- J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, USA, pp.185- 208, 1999. DOI: 10.5555/299094.299105
- S. S. Keerthi, C. Bhattacharyya, K. R. K. Murthy, "Improvements to Platt's SMO algorithm for SVM classifier design," Neural Computation, vol.13, no.3, pp.637-649, 2001. DOI: 10.1162/089976601300014493
- Jia-Ching Wang, Li-Xun Lian, Yan-Yu Lin, and Jia-Hao Zhao, "VLSI design for SVM-based speaker verification system," IEEE Trans. on Very Large Scale Integration (VLSI), vol.23, no.7, pp. 1355-1359, 2015. DOI: 10.1109/TVLSI.2014.2335112
- Zehra Camlica, H. R. Tizhoosh, and Farzad Khalvati, "Medical image classification via SVM using LBP features from saliency-based folded data," International Conf. on Machine Learning and Applications, pp.128-132, 2015. DOI: 10.1109/ICMLA.2015.131
- Lichen Feng, Zunchao Li, and Yuan Wang, "VLSI design of SVM-based seizure detection system with on-chip learning capability," IEEE Trans. on Biomedical Circuits and Systems, vol.12, no.1, pp.171-181, 2018. DOI: 10.1109/TBCAS.2017.2762721
- Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A. Ryan, Margie L. Homer, and Ramon Huerta, "Chemical gas sensor drift compensation using classifier ensembles," Sensors and Actuators B: Chemical, vol.166-167, no.20, pp.320-329, 2012. DOI: 10.1016/j.snb.2012.01.074
- Alexander Vergara, "UCI machine learning Repository," https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset.