DOI QR코드

DOI QR Code

Compressed-Sensing Cardiac CINE MRI using Neural Network with Transfer Learning

전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상

  • Received : 2019.12.09
  • Accepted : 2019.12.30
  • Published : 2019.12.31

Abstract

Deep artificial neural network with transfer learning is applied to compressed sensing cardiovascular MRI. Transfer learning is a method that utilizes structure, filter kernels, and weights of the network used in prior learning for current learning or application. The transfer learning is useful in accelerating learning speed, and in generalization of the neural network when learning data is limited. From a cardiac MRI experiment, with 8 healthy volunteers, the neural network with transfer learning was able to reduce learning time by a factor of more than five compared to that with standalone learning. Using test data set, reconstructed images with transfer learning showed lower normalized mean square error and better image quality compared to those without transfer learning.

전이학습을 수행한 심층 인공신경망을 압축센싱 심혈관 자기공명영상에 적용하였다. 전이학습은 선행학습 신경망의 구조나 필터 커널, 가중치를 현재의 학습이나 응용에 활용하는 방법이다. 전이학습은 학습 속도를 향상시키고, 학습 데이터가 제한적일 때 신경망의 일반화에 도움이 된다. 8명의 건강한 지원자가 참여한 심장 자기공명영상 실험에서 전이학습을 수행한 신경망은 단독학습 신경망에 비해 학습시간이 5배 이상 단축되었다. 시험 데이터에 대해서도 전이학습을 수행한 신경망은 전이학습을 수행하지 않은 신경망에 비하여 낮은 정규화 평균제곱오차와 향상된 재구성 영상화질을 보였다.

Keywords

References

  1. J. Tsao, S. Kozerke, "MRI temporal acceleration techniques," Jounal of Magnetic Resonanve Imaging, Vol.36, no.3, pp.543-560, 2012, DOI: 10.1002/jmri.23640.
  2. H. Jung, et al, "k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI," Magnetic Resonance in Medicine, Vol.61, no.1, pp.103-116, 2009. DOI: 10.1002/mrm.21757.
  3. J. Park, H. Hong, Y. Yang, C. Ahn, "Fast cardiac CINE MRI by iterative truncation of small transformed coefficients," Investigative Magnetic Resonance Imaging, Vol.19, no.1, pp. 19-30, 2015, DOI: 10.13104/imri.2015.19.1.19.
  4. O. Ronneberger, F. Philipp, B. Thomas, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical computing and computer-assisted intervention, Springer, Cham, 2015. DOI: 10.1007/978-3-319-24574-4_28.
  5. G. Litjens, et al, "A survey on deep learning in medical image analysis," Medical image analysis, Vol.42, pp.60-88, 2017. DOI: 10.1016/j.media.2017.07.005.
  6. C. Hyun, H. Kim, S. Lee, S. Lee, J. Seo, "Deep learning for undersampled MRI reconstruction," Physics in Medicine & Biology, vol.63, pp.135007, 2018. DOI: 10.1088/1361-6560/aac71a.
  7. D. Lee, J. Lee, J. Ko, J. Yoon, K. Ryu, Y. Nam, "Deep learning in MR image processing," Investigative Magnetic Resonance Imaging, Vol.23, no.2, pp.81-99, 2019. DOI:10.13104/imri.2019.23.2.81.
  8. Y. Chen, Y. Xie, Z. Zhou, F. Shi, A. G. Christodoulou, D. Li, "Brain MRI super resolution using 3D deep densely connected neural networks," In 2018 IEEE 15th International Symposium on Biomedical Imaging, pp.739-742, 2018. DOI: 10.1109/ISBI.2018.8363679.
  9. G. Wang, W. Li, M. A. Zuluaga, R. Pratt, P. A. Patel, M. Aertsen, T. Vercauteren, "Interactive medical image segmentation using deep learning with image-specific fine tuning," IEEE transactions on medical imaging, Vol.37, no.7, pp.1562-1573, 2018. DOI:10.1109/TMI.2018.2791721.
  10. A. Andreopoulos, J. Tsotsos, "Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI," Medical Image Analysis, Vol.12, no.3, pp.335-357, 2008. DOI: 10.1016/j.media.2007.12.003.
  11. H. Shin, et al, "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning," IEEE Transaction on Medical Imaging, Vol.35, no.5, pp.1285-1298, 2016. DOI: 10.1109/TMI.2016.2528162.
  12. K. Weiss, T. Khoshgoftaar, D. Wang, "A survey of transfer learning," Journal of Big Data, 3: 9, 2016. DOI: 10.1186/s40537-016-0043-6.
  13. J. Yoon, P. Kim, Y. Yang, J. Park, B. Choi, C. Ahn, "Biases in the assessment of left ventricular function by compressed sensing cardiovascular CINE MRI," Investigative Magnetic Resonance Imaging, Vol.23, no.2, pp.114-124, 2019. DOI: 10.13104/imri.2019.23.2.114.
  14. X. Glorot, Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.249-256, 2010.