References
- J. Tsao, S. Kozerke, "MRI temporal acceleration techniques," Jounal of Magnetic Resonanve Imaging, Vol.36, no.3, pp.543-560, 2012, DOI: 10.1002/jmri.23640.
- H. Jung, et al, "k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI," Magnetic Resonance in Medicine, Vol.61, no.1, pp.103-116, 2009. DOI: 10.1002/mrm.21757.
- J. Park, H. Hong, Y. Yang, C. Ahn, "Fast cardiac CINE MRI by iterative truncation of small transformed coefficients," Investigative Magnetic Resonance Imaging, Vol.19, no.1, pp. 19-30, 2015, DOI: 10.13104/imri.2015.19.1.19.
- O. Ronneberger, F. Philipp, B. Thomas, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical computing and computer-assisted intervention, Springer, Cham, 2015. DOI: 10.1007/978-3-319-24574-4_28.
- G. Litjens, et al, "A survey on deep learning in medical image analysis," Medical image analysis, Vol.42, pp.60-88, 2017. DOI: 10.1016/j.media.2017.07.005.
- C. Hyun, H. Kim, S. Lee, S. Lee, J. Seo, "Deep learning for undersampled MRI reconstruction," Physics in Medicine & Biology, vol.63, pp.135007, 2018. DOI: 10.1088/1361-6560/aac71a.
- D. Lee, J. Lee, J. Ko, J. Yoon, K. Ryu, Y. Nam, "Deep learning in MR image processing," Investigative Magnetic Resonance Imaging, Vol.23, no.2, pp.81-99, 2019. DOI:10.13104/imri.2019.23.2.81.
- Y. Chen, Y. Xie, Z. Zhou, F. Shi, A. G. Christodoulou, D. Li, "Brain MRI super resolution using 3D deep densely connected neural networks," In 2018 IEEE 15th International Symposium on Biomedical Imaging, pp.739-742, 2018. DOI: 10.1109/ISBI.2018.8363679.
- G. Wang, W. Li, M. A. Zuluaga, R. Pratt, P. A. Patel, M. Aertsen, T. Vercauteren, "Interactive medical image segmentation using deep learning with image-specific fine tuning," IEEE transactions on medical imaging, Vol.37, no.7, pp.1562-1573, 2018. DOI:10.1109/TMI.2018.2791721.
- A. Andreopoulos, J. Tsotsos, "Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI," Medical Image Analysis, Vol.12, no.3, pp.335-357, 2008. DOI: 10.1016/j.media.2007.12.003.
- H. Shin, et al, "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning," IEEE Transaction on Medical Imaging, Vol.35, no.5, pp.1285-1298, 2016. DOI: 10.1109/TMI.2016.2528162.
- K. Weiss, T. Khoshgoftaar, D. Wang, "A survey of transfer learning," Journal of Big Data, 3: 9, 2016. DOI: 10.1186/s40537-016-0043-6.
- J. Yoon, P. Kim, Y. Yang, J. Park, B. Choi, C. Ahn, "Biases in the assessment of left ventricular function by compressed sensing cardiovascular CINE MRI," Investigative Magnetic Resonance Imaging, Vol.23, no.2, pp.114-124, 2019. DOI: 10.13104/imri.2019.23.2.114.
- X. Glorot, Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.249-256, 2010.