References
- K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys. 271 (2007), no. 1, 179-198. https://doi.org/10.1007/s00220-006-0178-y
- Z.-Q. Chen, E. Hu, L. Xie, and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps, J. Differential Equations 263 (2017), no. 10, 6576-6634. https://doi.org/10.1016/j.jde.2017.07.023
- Z.-Q. Chen, P. Kim, and R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1307-1329.
- Z.-Q. Chen, P. Kim, and R. Song, Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation, Ann. Probab. 40 (2012), no. 6, 2483-2538. https://doi.org/10.1214/11-AOP682
- Z.-Q. Chen, P. Kim, and R. Song, Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbation, Trans. Amer. Math. Soc. 367 (2015), no. 7, 5237-5270. https://doi.org/10.1090/S0002-9947-2014-06190-4
- Z.-Q. Chen and L. Wang, Uniqueness of stable processes with drift, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2661-2675. https://doi.org/10.1090/proc/12909
- K. L. Chung, Lectures from Markov Processes to Brownian Motion, Grundlehren der Mathematischen Wissenschaften, 249, Springer-Verlag, New York, 1982.
-
K.-Y. Kim and P. Kim, Two-sided estimates for the transition densities of symmetric Markov processes dominated by stable-like processes in
$C^{1,{\eta}}$ , open sets, Stochastic Process. Appl. 124 (2014), no. 9, 3055-3083. https://doi.org/10.1016/j.spa.2014.04.004 -
P. Kim and R. Song, Dirichlet heat kernel estimates for stable processes with singular drift in unbounded
$C^{1,1}$ open sets, Potential Anal. 41 (2014), no. 2, 555-581. https://doi.org/10.1007/s11118-013-9383-4 - T. Kulczycki and M. Ryznar, Gradient estimates of Dirichlet heat kernels for unimodal Levy processes, Math. Nachr. 291 (2018), no. 2-3, 374-397. https://doi.org/10.1002/mana.201600443
- H. Li, D. Luo, and J. Wang, Harnack inequalities for SDEs with multiplicative noise and non-regular drift. Stoch. Dyn. 15 (2015), 1550015. https://doi.org/10.1142/S021949371550015X
- F.-Y.Wang, Harnack Inequalities for Stochastic Partial Differential Equations, Springer Briefs in Mathematics, Springer, New York, 2013.
- L. Xie and X. Zhang, Heat kernel estimates for critical fractional diffusion operators, Studia Math. 224 (2014), no. 3, 221-263.