DOI QR코드

DOI QR Code

Design of Diaphragm for Ultra High Pressure Sensors and Its performance Evaluation Using a PZT Actuated Deformation Tester

초고압 압력센서용 다이어프램 설계 및 PZT 구동 변형시험기를 이용한 성능평가

  • Yun, Dae Jhoong (School of Mechtronical Engineering, Pusan National Unversity) ;
  • Ahn, Jung Hwan (School of Mechtronical Engineering, Pusan National Unversity)
  • Received : 2018.11.21
  • Accepted : 2019.01.29
  • Published : 2019.01.31

Abstract

This research aims at designing a diaphragm made of SUS316L stainless steel for ultra high pressure sensors and evaluating its performance with a PZT driven deformation tester instead of high pressure chamber testing up to 100 MPa. Finite element method analysis indicates that the optimum thickness of a flat diaphragm is 1.5 mm not only to secure safety of sensors up to 100 MPa but also to enhance displacement measuring sensitivity. For this thickness, the maximum displacement at the center of the diaphragm is $5.3{\mu}m$. The PZT actuator must offer a force of 1,669 N to create a pressure of 100 MPa at the diaphragm surface in order to obtain a displacement of $5.3{\mu}m$. The performance evaluation by the PZT driven tester demonstrates nearly the same results as the same results as the sensors tested in the ultra high pressure chamber.

Keywords

HSSHBT_2019_v28n1_58_f0001.png 이미지

Fig. 1. Notch type diaphragm ; (a) Design of notch type diaphragm, (b) Background theory of design [12].

HSSHBT_2019_v28n1_58_f0002.png 이미지

Fig. 2. Flat type diaphragm ; (a) Design of flat type diaphragm, (b) Background theory of design.

HSSHBT_2019_v28n1_58_f0003.png 이미지

Fig. 3. FEM analysis result of Notch type diaphragm.

HSSHBT_2019_v28n1_58_f0004.png 이미지

Fig. 4. FEM analysis result of Flat type diaphragm.

HSSHBT_2019_v28n1_58_f0005.png 이미지

Fig. 5. Pressure sensor performance evaluation tester.

HSSHBT_2019_v28n1_58_f0006.png 이미지

Fig. 6. Design of Pressure input device.

HSSHBT_2019_v28n1_58_f0007.png 이미지

Fig. 7. Output force measuring device of PZT.

HSSHBT_2019_v28n1_58_f0008.png 이미지

Fig. 8. PZT output force according to voltage.

HSSHBT_2019_v28n1_58_f0009.png 이미지

Fig. 9. Deformation sensor performance tester.

HSSHBT_2019_v28n1_58_f0010.png 이미지

Fig. 10. Deformation of each sensor according to pressure.

HSSHBT_2019_v28n1_58_f0011.png 이미지

Fig. 11. Deformation measuring test in pressure chamber.

HSSHBT_2019_v28n1_58_f0012.png 이미지

Fig. 12. Deformation measuring value in each tester.

Table 1. Deformation according to notch thickness (diaphragm thickness : 20 mm)

HSSHBT_2019_v28n1_58_t0001.png 이미지

Table 2. Deformation according to diaphragm thickness

HSSHBT_2019_v28n1_58_t0002.png 이미지

Table 3. Deformation according to diaphragm thickness

HSSHBT_2019_v28n1_58_t0003.png 이미지

Table 4. Deformation according to measuring diameter

HSSHBT_2019_v28n1_58_t0004.png 이미지

References

  1. S. Y. Kim and I. Kang, "A Study on the Development of a Novel Pressure based on Nano Carbon Piezoresistive Composite by Using 3D Printing", Trans. Korean Soc. Mech. Eng.A, Vol. 41, No. 3, pp. 187-192, 2017 https://doi.org/10.3795/KSME-A.2017.41.3.187
  2. J. M. Kim and G. S. Chung, "Fabrication of a micromachined ceramic thin-film type pressure sensor for high overpressure tolerance and its characteristics", J. Sens. Sci. Technol., Vol. 12, No. 5, pp. 199-204, 2003. https://doi.org/10.5369/JSST.2003.12.5.199
  3. M. M. Kim, T. C. Nam, and Y. T. Lee, " Development of the High Temperature Silicon Pressure sensor", J. Sens. Sci. Technol., Vol. 13, No. 3, pp. 175-181, 2004. https://doi.org/10.5369/JSST.2004.13.3.175
  4. B. K. Ju, B. J. Ha, K. S. Kim, M. H. Song, S. H. Kim, C. J. Kim, K. H. Tchah, M. H. Oh, " Formation of Silicon Diaphragm Using Silicon - Wafer Direct bonding / Electrochemical Etch - stopping and Its Application to Silicon pressure Sensor Fabrication", J. Sens. Sci. Technol., Vol. 3, No. 3, pp. 45-53, 1994.
  5. H. R. Lee, J. H. Ahn, J. O. Shin, and H. Y. Kim, "Design of Solenoid Actuator for FCV Cylinder Valve Considering Structural Safety", J. Korean Soc. Manuf. Technol. Eng., Vol. 25, No. 3, pp. 157-163, 2016. https://doi.org/10.7735/ksmte.2016.25.3.157
  6. D. J. Yoon and J. H. Ahn, "Development of a Test Equipment for Diaphragm Deflection Using a PZT Actuator", J. Korean Soc. Precis. Eng., Vol. 34, No. 12, pp. 927-932, 2017 https://doi.org/10.7736/KSPE.2017.34.12.927
  7. M. Hommel, O. Kraft, S. P. Baker and E. Arzt, "Micro-Tensile and Fatigue Testing of Copper Thin Films on Substrates", MRS Proc., Vol. 546 , pp. 133-138, 1999.
  8. J. P. Lee, H. J. Lee, J. H. Hwang, N. K. Lee and J. S. Bae, "A Study on a micro dynamic tester development for a micro property measurement of a micro metal specimen", Proc. Korean Soc. Noise Vib. Eng., Vol. 11, pp. 166-171, 2006.
  9. C. S. Oh, H. G. Ahn, and H. J. Lee, "Development and Application of Material testers for the Thin Film", J. Korean Soc. Precis. Eng., Vol. 23, No. 03 pp. 163-170, 2006.
  10. Y. H. Kwon, "Calculation of rated output in diaphragm type miniature load cell", J. Korean Soc. Precis. Eng., Vol. 7, No. 2, pp. 58-64, 1990.
  11. C. Y. Kim and W. N. Sharp, "Development of a Fatigue Testing System for Micro-Specimens", Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 09, pp. 1201-1207, 2010. https://doi.org/10.3795/KSME-A.2010.34.9.1201
  12. J. H. Park and Y. J. Kim, "A Novel Tensile Specimen and Tester for Mechanical Properties of Thin Films", Trans. Korean Soc. Mech. Eng A, Vol. 31, No. 06, pp. 644-650, 2007. https://doi.org/10.3795/KSME-A.2007.31.6.644
  13. C. Y. Kim, J. H. Song and D. Y. Lee, "Development of a fatigue testing system for thin films", Int. J. Fatigue, Vol. 31, No. 04, pp. 736-742, 2009. https://doi.org/10.1016/j.ijfatigue.2008.03.010
  14. B. Jorg and N. S. Jr. William, "Fatigue of Polycrystalline Silicon under long-term Cyclic Loading", Sens. Actuators A, Vol. 103, No. 1-2, pp. 9-15, 2003. https://doi.org/10.1016/S0924-4247(02)00328-X
  15. S. Troiler-McKinstry and P. Muralt, "Thin Film Piezoelectric for MEMS", J. Electroceram., Vol. 12, No. 1, pp. 7-17, 2004. https://doi.org/10.1023/B:JECR.0000033998.72845.51