DOI QR코드

DOI QR Code

Reliability Assessment of Flexible InGaP/GaAs Double-Junction Solar Module Using Experimental and Numerical Analysis

유연 InGaP/GaAs 2중 접합 태양전지 모듈의 신뢰성 확보를 위한 실험 및 수치 해석 연구

  • Kim, Youngil (Graduate School of Nano IT Design Fusion Technology, Seoul National University of Science and Technology) ;
  • Le, Xuan Luc (Graduate School of Nano IT Design Fusion Technology, Seoul National University of Science and Technology) ;
  • Choa, Sung-Hoon (Graduate School of Nano IT Design Fusion Technology, Seoul National University of Science and Technology)
  • 김영일 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • ;
  • 좌성훈 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2019.12.02
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

Flexible solar cells have attracted enormous attention in recent years due to their wide applications such as portable batteries, wearable devices, robotics, drones, and airplanes. In particular, the demands of the flexible silicon and compound semiconductor solar cells with high efficiency and high reliability keep increasing. In this study, we fabricated a flexible InGaP/GaAs double-junction solar module. Then, the effects of the wind speed and ambient temperature on the operating temperature of the solar cell were analyzed with the numerical simulation. The temperature distributions of the solar modules were analyzed for three different wind speeds of 0 m/s, 2.5 m/s, and 5 m/s, and two different ambient temperature conditions of 25℃ and 33℃. The flexibility of the flexible solar module was also evaluated with the bending tests and numerical bending simulation. When the wind speed was 0 m/s at 25 ℃, the maximum temperature of the solar cell was reached to be 149.7℃. When the wind speed was increased to 2.5 m/s, the temperature of the solar cell was reduced to 66.2℃. In case of the wind speed of 5 m/s, the temperature of the solar cell dropped sharply to 48.3℃. Ambient temperature also influenced the operating temperature of the solar cell. When the ambient temperature increased to 33℃ at 2.5 m/s, the temperature of the solar cell slightly increased to 74.2℃ indicating that the most important parameter affecting the temperature of the solar cell was heat dissipation due to wind speed. Since the maximum temperatures of the solar cell are lower than the glass transition temperatures of the materials used, the chances of thermal deformation and degradation of the module will be very low. The flexible solar module can be bent to a bending radius of 7 mm showing relatively good bending capability. Neutral plane analysis was also indicated that the flexibility of the solar module can be further improved by locating the solar cell in the neutral plane.

유연 태양 전지는 최근 휴대용 배터리, 웨어러블 소자, 로봇, 드론 및 비행기와 같은 광범위한 응용 분야로 인해 큰 주목을 받고 있다. 특히, 고효율 및 높은 신뢰성을 갖는 유연 실리콘 및 화합물 반도체 태양 전지의 요구가 계속 증가하고 있다. 본 연구에서는 유연 InGaP/GaAs 2중 접합 태양전지 모듈을 개발하였다. 특히 제작된 유연 태양전지 모듈의 신뢰성을 확보하기 위하여, 풍속 및 주위 온도가 태양 전지 작동 온도에 미치는 영향을 수치해석으로 분석하였다. 3종류의 풍속(0 m/s, 2.5 m/s 및 5 m/s) 및 2종류의 주변 온도 조건(25℃ 및 33℃)에 대하여 태양 전지 모듈의 온도 분포를 해석하였다. 유연 태양전지 모듈의 유연성은 굽힘 시험 및 굽힘 수치해석을 통하여 평가하였다. 25℃ 온도조건에서 풍속이 0 m/s 일 때, 태양 전지 셀의 최대 온도는 149.7℃이다. 풍속이 2.5 m/s로 증가되었을 경우, 태양 전지의 온도는 66.2℃로 크게 감소되었다. 또한 풍속이 5 m/s 인 경우, 태양 전지의 온도는 48.3℃로 급격히 감소함을 알 수 있었다. 주변 온도 또한 태양 전지의 작동 온도에 영향을 미친다. 2.5 m/s의 풍속에서 주변 온도가 33℃로 증가할 경우, 태양 전지의 온도는 74.2℃로 약간 증가하였다. 따라서 태양 전지 셀의 온도에 영향을 미치는 가장 중요한 인자는 풍속으로 인한 열 방출 효과임을 알 수 있었다. 또한 태양 전지의 최대 온도는 사용된 소재들의 유리 전이 온도보다 낮기 때문에, 열 변형 및 모듈의 열화 가능성은 매우 낮을 것으로 예측된다. 제작된 태양전지 모듈은 굽힘 반경 7 mm까지 굽힐 수 있어 비교적 우수한 유연성을 갖고 있었다. 또한 향후 neutral plane 해석을 통하여 태양전지 셀을 neutral plane에 위치시키면 유연성이 크게 증가할 것으로 예측된다.

Keywords

References

  1. C. H. Lee, D. R. Kim, and X. Zheng, "Transfer printing methods for flexible thin film solar cells: Basic concepts and working principles", ACS Nano, 8(9), 8746 (2014). https://doi.org/10.1021/nn5037587
  2. S. H. Lee, and H. J. Chang, "Properties of Organic-Inorganic Protective films on flexible plastic substrates by spray coating method", J. Microelectron. Packag. Soc., 24(4), 79 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.079
  3. S. K. Jang, S. C. Gong, and H. J. Chang, "The post annealing effect of oganic thin film solar cells with P3HT:PCBM active layer", J. Microelectron. Packag. Soc., 17(2), 63 (2010).
  4. D. Yang, R. Yang, S. Priya, and S. Liu, "Recent advances in flexible perovskite solar cells: fabrication and applications", Angew. Chem. Int. Ed., 58(14), 4466 (2019). https://doi.org/10.1002/anie.201809781
  5. Q. Lin, H. Huang, Y. Jing, H. Fu, P. Chang, D. Li, Y. Yao, and Z. Fan, "Flexible photovoltaic technologies", J. Mater. Chem. C, 2(7), 1233 (2014). https://doi.org/10.1039/c3tc32197e
  6. T. Hausler, and H. Rogass, "Latent heat storage on photovoltaic", Proc. 16th European PV Solar Energy Conference and Exhibition (EU PVSEC), 2265 (2000).
  7. E. Radziemska, "The effect of temperature on the power drop in crystalline silicon solar cells", Renew. Energy, 28(1), 1 (2003). https://doi.org/10.1016/S0960-1481(02)00015-0
  8. K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, "Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions", IEE Proc. Generation Transmiss. Distrib., 142(1), 59 (1995).
  9. P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, and J. Kimball, "Dynamic maximum power point tracker for photovoltaic applications", Proc. 27th Annu. IEEE Power Electron. Spec. Conf., 1710 (1996).
  10. J. Yang, Y. Sun, and Y. Xu, "Modeling impact of environmental factors on photovoltaic array performance", Int. J. Energy Environ., 4(6), 955 (2013).
  11. S. Armstrong, and W. G. Hurley, "A thermal model for photovoltaic panels under varying atmospheric conditions", Appl. Therm. Eng., 30(11-12), 1488 (2010). https://doi.org/10.1016/j.applthermaleng.2010.03.012
  12. J. C. Zhou, Z. Zhang, H. J. Liu, and Q. Yi, "Temperature distribution and back sheet role of polycrystalline silicon photovoltaic modules", Appl. Thermal Eng., 111, 1296 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.095
  13. Y. Du, W. Tao, Y. Liu, J. Jiang, and H. Huang, "Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules", Sol. Energy, 146, 257 (2017). https://doi.org/10.1016/j.solener.2017.02.049
  14. M. U. Siddiqui, A. F. M. Arif, L. Kelley, and S. Dubowsky, "Three-dimensional thermal modeling of a photovoltaic module under varying conditions", Sol. Energy, 86(9), 2620 (2012). https://doi.org/10.1016/j.solener.2012.05.034
  15. S. Moon, Y. Kim, K. Kim, C. Z. Kim, S. H. Jung, H. B. Shin, K. H. Park, W. K. Park, Y. S. Ahn, and H. K. Kang, "Flexible InGaP/GaAs double-junction solar cells transferred onto thin metal film", Current Photovoltaic Research (CPVR), 4(3), 108 (2016). https://doi.org/10.21218/CPR.2016.4.3.108
  16. W. Choi, C. Z. Kim, H. K. Kang, and S. Jo, "The Effect of Metal Back-reflective Layers on the Performance of Transfer Printed GaAs Solar Cells", Current Photovoltaic Research (CPVR), 2(2), 73 (2014).
  17. Y. Lee, and A. A. Tay, "Finite element thermal analysis of a solar photovoltaic module", Energy Proc., 15, 413 (2012). https://doi.org/10.1016/j.egypro.2012.02.050
  18. J. Vlachopoulos, and D. Strutt, "Plastics Technicians Toolbox", Society of Plastic Engineering (SPE), 2, 21 (2002).
  19. N. Peter, O. E. Kabu, K. Stephen, and D. Anthony, "3D finite element method modelling and simulation of the temperature of crystalline photovoltaic module", International Journal of Research in Engineering and Technology (IJRET), 4(9), 378 (2015). https://doi.org/10.15623/ijret.2015.0409070
  20. G. Acciani, O. Falcone, and S. Vergura, "Analysis of the thermal heating of poly-Si and a-Si photovoltaic cell by means of Fem", International Conference on Renewable Energies and Power Quality (ICREPQ), 4(4) (2010).
  21. S. Lee, J. Y. Kwon, D. Yoon, H. Cho, J. You, Y. T. Kang, D. Choi, and W. Hwang, "Bendability optimization of flexible optical nanoelectronics via neutral axis engineering", Nanoscale Res. Lett., 7(1), 256 (2012). https://doi.org/10.1186/1556-276X-7-256
  22. Y. Sun, V. Kumar, I. Adesida, and J. A. Rogers, "Buckled and wavy ribbons of GaAs for high-performance electronics on elastomeric substrates", Adv. Mater., 18(21), 2857 (2006). https://doi.org/10.1002/adma.200600646