DOI QR코드

DOI QR Code

결정성에 따른 TiO2 나노입자의 포토루미네선스 영향

The Effect of Crystallinity on the Photoluminescence of TiO2 Nanoparticles

  • 한우제 (연세대학교 신소재공학과) ;
  • 박형호 (연세대학교 신소재공학과)
  • Han, Wooje (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2019.03.22
  • 심사 : 2019.03.29
  • 발행 : 2019.03.30

초록

타이타니아 ($TiO_2$)는 독성이 없고 매우 높은 굴절률, 촉매 활성 및 생체 적합성을 지니고 있으며 화학적 안정성이 있고 높은 이방성을 갖는 저렴한 재료로써 다양한 분야에서 각광받고 있는 세라믹 소재이다. 이러한 $TiO_2$를 sol-gel법을 이용하여 나노입자화 하였다. 나노입자 형성중에 pH를 조절하여 $TiO_2$의 결정성을 제어하였다. 합성된 나노입자는 엑스선 회절분석법, 퓨리에 분광기(Fourier transform infrared), 전계방사형 주사전자현미경(field emission scanning electron microscopy)과 포토루미네선스(photoluminescence spectroscopy)를 이용하여 분석하였다. 합성된 $TiO_2$ 나노입자는 5 nm 이하의 크기를 갖는 것을 확인하였다. 나노입자의 결정성이 증가됨에 따라 550 nm 영역의 발광세기가 증가함을 확인하였다. 이러한 결과로 $TiO_2$ 나노입자의 결정성 조절을 통한 발광 특성 조절을 기대할 수 있다.

The Titanium oxide ($TiO_2$) is an attractive ceramic material which shows non-toxic, high refractive index, catalytic activity and biocompatibility, and can be fabricated at a low cost due to its high chemical stability and large anisotropy. $TiO_2$ nanoparticles have been prepared by sol-gel method. The pH of solution can affect the $TiO_2$ crystallinity during the formation of nanoparticles. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, photoluminescence spectroscopy in order to investigate their structural and photoluminescence properties. Through these analysis, the size of $TiO_2$ nanoparticles were found to be smaller than 5 nm. As the crystallinity of the nanoparticles increased, the emission of PL in the 550 nm region increased. Therefore, luminescence characteristics can be improved by controlling the crystallinity of the $TiO_2$ nanoparticles.

키워드

MOKRBW_2019_v26n1_23_f0001.png 이미지

Fig. 1. Schematic flow chart for synthesis of TiO2 nanoparticles.

MOKRBW_2019_v26n1_23_f0002.png 이미지

Fig. 2. XRD spectra of TiO2 nanoparticles with different pH condition.

MOKRBW_2019_v26n1_23_f0003.png 이미지

Fig. 3. PSA results of TiO2 nanoparticles with different pH condition: (a) pH 2, (b) pH 3 and (c) pH 4.

MOKRBW_2019_v26n1_23_f0004.png 이미지

Fig. 4. SEM images of TiO2 nanoparticles with different pH condition: (a) pH 2, (b) pH 3 and (c) pH 4.

MOKRBW_2019_v26n1_23_f0005.png 이미지

Fig. 5. FT-IR spectra of TiO2 nanoparticles with various pH condition.

MOKRBW_2019_v26n1_23_f0006.png 이미지

Fig. 6. Photoluminescence spectra of TiO2 nanoparticles with different pH condition: (a) pH 2, (b) pH 3 and (c) pH 4.

참고문헌

  1. M. Bartic, L. Sacarescu, and V. Harabagiu, "Optical and Electrical Properties of $TiO_2$ Thin Films Deposited by Sol-Gel Method", Rev. Roum. Chim., 58, 105 (2013).
  2. T.-Y. Lee, K.-H. Kim, M.-S. Kim, E.-S. Ko, J.-H. Chio, K.-S. Moon, M.-S. Kim, and Sehoon Yoo, "Light Efficiency of LED Package with $TiO_2$-nanoparticle-dispersed Encapsulant", J. Microelectron. Packag. Soc., 21(3), 31 (2014). https://doi.org/10.6117/KMEPS.2014.21.3.031
  3. A. L. Linsebigler, G. Lu, and J. T. Yates, "Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results", Chem. Rev., 95, 735 (1995). https://doi.org/10.1021/cr00035a013
  4. T. L. Thompson and J. T. Yates, "Surface Science Studies of the Photoactivation of $TiO_2$ New Photochemical Processes", Chem. Rev., 106, 4428 (2006). https://doi.org/10.1021/cr050172k
  5. M. Pal, J. G. Serrano, P. Santiago, and U. Pal, "Size-Controlled Synthesis of Spherical $TiO_2$ Nanoparticles: Morphology, Crystallization, and Phase Transition", J. Phys. Chem. C., 111, 96 (2007). https://doi.org/10.1021/jp0618173
  6. I.-S. Park, K.-R. Kim, and J. Ahn, "Resistance Switching Characteristics of binary $SiO_2$ and $TiO_2$ films", J. Microelectron. Packag. Soc., 13(2), 15 (2006).
  7. M. D'Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, and F. Morazzoni, "Photogenerated Defects in Shape-Controlled $TiO_2$ Anatase Nanocrystals: A Probe to Evaluate the Role of Crystal Facets in Photocatalytic Processes", J. Am. Chem. Soc., 133, 17652 (2011). https://doi.org/10.1021/ja204838s
  8. T.-H. Cho and S.-J. Park, "A Synthesis of Spherical Shape $TiO_2$-$SiO_2$ Complex via Solvothermal Process", J. Microelectron. Packag. Soc., 12(2), 141 (2005).
  9. C.-S. Kim, B. K. Moon, J -H. Park, S. T. Chung, and S.-M. Son, "Synthesis of Nanocrystalline $TiO_2$ in Toluene by a Solvothermal Route", J. Cryst. Growth., 254, 405 (2003). https://doi.org/10.1016/S0022-0248(03)01185-0
  10. A. Matsuda, Y. Kotani, T. Kagure, M. Tatsumisago, and T. Minami, "Transparent Anatase Nanocomposite Films by the Sol-Gel Process at Low Temperature", J. Am. Ceram. Soc., 83, 229 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01178.x
  11. L. Chiodo, J. M. Garcia-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, "Self-energy and excitonic effects in the electronic and optical properties of $TiO_2$ crystalline phases", Phys. Rev. B., 82, 045207 (2010). https://doi.org/10.1103/PhysRevB.82.045207
  12. S. Mahshid, M. Askari, M. S. Ghamsari, N. Afshar, and S. Lahuti, "Mixed-Phase $TiO_2$ Nanoparticles Preparation using Sol-Gel Method", J. Alloy. Compd., 478, 586 (2009). https://doi.org/10.1016/j.jallcom.2008.11.094
  13. J. Livage, M. Henry, and C. Sanchez, "Sol-gel chemistry of transition metal oxides", Prog. Solid State Chem., 18, 259 (1988). https://doi.org/10.1016/0079-6786(88)90005-2
  14. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, "Chemical modification of alkoxide precursors", J. Non-Cryst. Solids., 100, 65 (1988). https://doi.org/10.1016/0022-3093(88)90007-5
  15. N. Phonthammachai, T. Chairassameewong, E. Gulari, A. M. Jamieson, and S. Wongkasemjit, "Structural and rheological aspect of mesoporous nanocrystalline $TiO_2$ synthesized via sol-gel process", Microporous Mesoporous Mater., 166, 261 (2003).
  16. S. Mahshid, M. Askari, and M. Sasani Ghamsari, "Synthesis of $TiO_2$ nanoparticles by hydrolysis and peptization of titanium isopropoxide solution", J. Mater. Proc. Tech., 189, 296 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.040
  17. G. Yang, T. Wang, B. Yang, Z. Yan, S. Ding, and T. Xiao, "Enhanced Visible-Light Activity of F-N Co-Doped $TiO_2$ Nanocrystals via Nonmetal Impurity, $Ti^{3+}$ Ions and Oxygen Vacancies", Appl. Surf. Sci., 287, 135 (2013). https://doi.org/10.1016/j.apsusc.2013.09.094
  18. G. Oskam, A. Nellore, R. Lee Penn, and P. C. Searson, "The growth kinetics of $TiO_2$ nanoparticles from titanium (IV) alkoxide at high water/titanium ratio", J. Phys. Chem. B., 107, 1734 (2003). https://doi.org/10.1021/jp021237f
  19. J. Wang, X. Liu, R. Li, P. Qiao, L. Xiao, and J. Fan, "$TiO_2$ nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity", Catal. Commun., 19, 96 (2012). https://doi.org/10.1016/j.catcom.2011.12.028
  20. X. Chen, L. Liu, Z. Liu, M. A. Marcus, W.-C. Wang, N. A. Oyler, M. E. Grass, B. Mao, P.-A. Glans, P. Y. Yu, J. Guo, and S. S. Mao, "Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation", Sci. Rep., 3, 1510 (2013). https://doi.org/10.1038/srep01510
  21. M. Salavati-Niasari, Z. Fereshtch, and F. Daver, "Synthesis of Oleylamine Capped Copper Nanocrystals via Thermal Reduction of a New Precursor", Polyhedron, 28, 126 (2009). https://doi.org/10.1016/j.poly.2008.09.027
  22. W. Buraso, V. Lachom, P. Siriya, and P. Laokul, "Synthesis of $TiO_2$ nanoparticles via a simple precipitation method and photocatalytic performance", Mater. Res. Express., 5, 115003 (2018). https://doi.org/10.1088/2053-1591/aadbf0
  23. S. Kaniyankandy and H. N. Ghosh, "Efficient luminescence and photocatalytic behaviour in ultrafine $TiO_2$ particles synthesized by arrested precipitation", J. Mater. Chem., 19, 3523 (2009). https://doi.org/10.1039/b904589a
  24. F. J. Knorr, C. C. Mercado, and J. L. McHale, "Trap-State Distributions and Carrier Transport in Pure and Mixed-Phase $TiO_2$: Influence of Contacting Solvent and Interphasial Electron Transfer", J. Phys. Chem. C., 112, 12786 (2008). https://doi.org/10.1021/jp8039934
  25. B. Choudhury and A. Choudhury, "Tailoring Luminescence Properties of $TiO_2$ Nanoparticles by Mn Doping", J. Lumin., 136, 339 (2013). https://doi.org/10.1016/j.jlumin.2012.12.011
  26. G. Liu, S. Xie, Q. Zhang, Z. Tian, and Y. Wang, "Carbon dioxide-enhanced photosynthesis of methane and hydrogen from carbon dioxide and water over Pt-promoted polyaniline-$TiO_2$ nanocomposites", Chem. Commun., 51, 13654 (2015) https://doi.org/10.1039/C5CC05113D
  27. A. Stevanovic, M. Buttner, Z. Zhang, and J. T. Yates, Jr., "Photoluminescence of $TiO_2$: Effect of UV Light and Adsorbed Molecules on Surface Band Structure", J. Am. Chem. Soc., 134, 324 (2012). https://doi.org/10.1021/ja2072737
  28. W. Yuan, J. Meng, B. Zhu, Y. Gao, Z. Zhang, C. Sun, and Y. Wang, "Unveiling the Atomic Structures of the Minority Surfaces of $TiO_2$ Nanocrystals", Chem. Mater., 30(1), 288 (2018). https://doi.org/10.1021/acs.chemmater.7b04541