DOI QR코드

DOI QR Code

Metabolic features and regulation in cell senescence

  • Kwon, So Mee (Department of Biochemistry, Ajou University School of Medicine) ;
  • Hong, Sun Mi (Department of Biochemistry, Ajou University School of Medicine) ;
  • Lee, Young-Kyoung (Department of Biochemistry, Ajou University School of Medicine) ;
  • Min, Seongki (Department of Biochemistry, Ajou University School of Medicine) ;
  • Yoon, Gyesoon (Department of Biochemistry, Ajou University School of Medicine)
  • Received : 2018.10.10
  • Published : 2019.01.31

Abstract

Organismal aging is accompanied by a host of progressive metabolic alterations and an accumulation of senescent cells, along with functional decline and the appearance of multiple diseases. This implies that the metabolic features of cell senescence may contribute to the organism's metabolic changes and be closely linked to age-associated diseases, especially metabolic syndromes. However, there is no clear understanding of senescent metabolic characteristics. Here, we review key metabolic features and regulators of cellular senescence, focusing on mitochondrial dysfunction and anabolic deregulation, and their link to other senescence phenotypes and aging. We further discuss the mechanistic involvement of the metabolic regulators mTOR, AMPK, and GSK3, proposing them as key metabolic switches for modulating senescence.

Keywords

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217 https://doi.org/10.1016/j.cell.2013.05.039
  2. Munoz-Espin D and Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482-496 https://doi.org/10.1038/nrm3823
  3. Hernandez-Segura A, Nehme J and Demaria M (2018) Hallmarks of Cellular Senescence. Trends Cell Biol 28, 436-453 https://doi.org/10.1016/j.tcb.2018.02.001
  4. Hanks S, Coleman K, Reid S et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36, 1159-1161 https://doi.org/10.1038/ng1449
  5. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184-189 https://doi.org/10.1038/nature16932
  6. Bhat R, Crowe EP, Bitto A et al (2012) Astrocyte senescence as a component of Alzheimer's disease. PLoS One 7, e45069 https://doi.org/10.1371/journal.pone.0045069
  7. Ogrodnik M, Miwa S, Tchkonia T et al (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8, 15691 https://doi.org/10.1038/ncomms15691
  8. Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8, 14532 https://doi.org/10.1038/ncomms14532
  9. Byun HO, Lee YK, Kim JM and Yoon G (2015) From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep 48, 549-558 https://doi.org/10.5483/BMBRep.2015.48.10.122
  10. Hwang ES, Yoon G and Kang HT (2009) A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 66, 2503-2524 https://doi.org/10.1007/s00018-009-0034-2
  11. Matsumura T, Zerrudo Z and Hayflick L (1979) Senescent human diploid cells in culture: survival, DNA synthesis and morphology. J Gerontol 34, 328-334 https://doi.org/10.1093/geronj/34.3.328
  12. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G and Papa S (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226, 73-82 https://doi.org/10.1016/0925-4439(94)90061-2
  13. Ishii N, Fujii M, Hartman PS et al (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394, 694-697 https://doi.org/10.1038/29331
  14. Krishnan KJ, Greaves LC, Reeve AK and Turnbull DM (2007) Mitochondrial DNA mutations and aging. Ann N Y Acad Sci 1100, 227-240 https://doi.org/10.1196/annals.1395.024
  15. Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79, 683-706 https://doi.org/10.1146/annurev-biochem-060408-093701
  16. Lezza AM, Boffoli D, Scacco S, Cantatore P and Gadaleta MN (1994) Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun 205, 772-779 https://doi.org/10.1006/bbrc.1994.2732
  17. Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423 https://doi.org/10.1038/nature02517
  18. Balaban RS, Nemoto S and Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120, 483-495 https://doi.org/10.1016/j.cell.2005.02.001
  19. Miquel J, Economos AC, Fleming J and Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15, 575-591 https://doi.org/10.1016/0531-5565(80)90010-8
  20. Park SY, Choi B, Cheon H et al (2004) Cellular aging of mitochondrial DNA-depleted cells. Biochem Biophys Res Commun 325, 1399-1405 https://doi.org/10.1016/j.bbrc.2004.10.182
  21. Yoon G, Kim HJ, Yoon YS, Cho H, Lim IK and Lee JH (2002) Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem J 366, 613-621 https://doi.org/10.1042/bj20011445
  22. Yoon YS, Byun HO, Cho H, Kim BK and Yoon G (2003) Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J Biol Chem 278, 51577-51586 https://doi.org/10.1074/jbc.M308489200
  23. Byun HO, Jung HJ, Kim MJ and Yoon G (2014) PKCdelta phosphorylation is an upstream event of GSK3 inactivationmediated ROS generation in TGF-beta1-induced senescence. Free Radic Res 48, 1100-1108 https://doi.org/10.3109/10715762.2014.929120
  24. Yoon YS, Lee JH, Hwang SC, Choi KS and Yoon G (2005) TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene 24, 1895-1903 https://doi.org/10.1038/sj.onc.1208262
  25. Byun HO, Jung HJ, Seo YH et al (2012) GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp Cell Res 318, 1808-1819 https://doi.org/10.1016/j.yexcr.2012.04.012
  26. Lafargue A, Degorre C, Corre I et al (2017) Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic Biol Med 108, 750-759 https://doi.org/10.1016/j.freeradbiomed.2017.04.019
  27. Wu WB, Menon R, Xu YY et al (2016) Downregulation of peroxiredoxin-3 by hydrophobic bile acid induces mitochondrial dysfunction and cellular senescence in human trophoblasts. Sci Rep 6, 38946 https://doi.org/10.1038/srep38946
  28. Murakoshi M, Osamura Y and Watanabe K (1985) Mitochondrial alterations in aged rat adrenal cortical cells. Tokai J Exp Clin Med 10, 531-536
  29. Tandler B and Hoppel CL (1986) Studies on giant mitochondria. Ann N Y Acad Sci 488, 65-81 https://doi.org/10.1111/j.1749-6632.1986.tb46548.x
  30. Yoon YS, Yoon DS, Lim IK et al (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209, 468-480 https://doi.org/10.1002/jcp.20753
  31. Westermann B (2002) Merging mitochondria matters: cellular role and molecular machinery of mitochondrial fusion. EMBO Rep 3, 527-531 https://doi.org/10.1093/embo-reports/kvf113
  32. Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26, 23-29 https://doi.org/10.1016/S0968-0004(00)01735-7
  33. Ono T, Isobe K, Nakada K and Hayashi JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28, 272-275 https://doi.org/10.1038/90116
  34. Takai D, Inoue K, Goto Y, Nonaka I and Hayashi JI (1997) The interorganellar interaction between distinct human mitochondria with deletion mutant mtDNA from a patient with mitochondrial disease and with HeLa mtDNA. J Biol Chem 272, 6028-6033 https://doi.org/10.1074/jbc.272.9.6028
  35. Song M, Franco A, Fleischer JA, Zhang L and Dorn GW 2nd (2017) Abrogating Mitochondrial Dynamics in Mouse Hearts Accelerates Mitochondrial Senescence. Cell Metab 26, 872-883 e875 https://doi.org/10.1016/j.cmet.2017.09.023
  36. Kang HT and Hwang ES (2009) Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438 https://doi.org/10.1111/j.1474-9726.2009.00487.x
  37. Kurz T, Terman A, Gustafsson B and Brunk UT (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta 1780, 1291-1303 https://doi.org/10.1016/j.bbagen.2008.01.009
  38. Kim YM, Shin HT, Seo YH et al (2010) Sterol regulatory element-binding protein (SREBP)-1-mediated lipogenesis is involved in cell senescence. J Biol Chem 285, 29069-29077 https://doi.org/10.1074/jbc.M110.120386
  39. Ballinger SW (2013) Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem Soc Trans 41, 111-117 https://doi.org/10.1042/BST20120227
  40. Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A and Szabadkai G (2012) PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 12, 86-99 https://doi.org/10.1016/j.mito.2011.09.009
  41. Poyton RO and McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65, 563-607 https://doi.org/10.1146/annurev.bi.65.070196.003023
  42. Finley LW and Haigis MC (2009) The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res Rev 8, 173-188 https://doi.org/10.1016/j.arr.2009.03.003
  43. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407 https://doi.org/10.1146/annurev.genet.39.110304.095751
  44. Biswas G, Adebanjo OA, Freedman BD et al (1999) Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 18, 522-533 https://doi.org/10.1093/emboj/18.3.522
  45. Butow RA and Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14, 1-15 https://doi.org/10.1016/S1097-2765(04)00179-0
  46. Chae S, Ahn BY, Byun K et al (2013) A systems approach for decoding mitochondrial retrograde signaling pathways. Sci Signal 6, rs4 https://doi.org/10.1126/scisignal.2003266
  47. Jazwinski SM and Kriete A (2012) The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 3, 139 https://doi.org/10.3389/fphys.2012.00139
  48. Finkel T and Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247 https://doi.org/10.1038/35041687
  49. Lee HC and Wei YH (2001) Mitochondrial alterations, cellular response to oxidative stress and defective degradation of proteins in aging. Biogerontology 2, 231-244 https://doi.org/10.1023/A:1013270512172
  50. Raha S and Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25, 502-508 https://doi.org/10.1016/S0968-0004(00)01674-1
  51. Sohal RS, Ku HH, Agarwal S, Forster MJ and Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74, 121-133 https://doi.org/10.1016/0047-6374(94)90104-X
  52. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3, 155-168 https://doi.org/10.1038/nrc1011
  53. Henle ES, Han Z, Tang N, Rai P, Luo Y and Linn S (1999) Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 274, 962-971 https://doi.org/10.1074/jbc.274.2.962
  54. Oikawa S, Tada-Oikawa S and Kawanishi S (2001) Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry 40, 4763-4768 https://doi.org/10.1021/bi002721g
  55. Furumoto K, Inoue E, Nagao N, Hiyama E and Miwa N (1998) Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci 63, 935-948 https://doi.org/10.1016/S0024-3205(98)00351-8
  56. Pizzimenti S, Briatore F, Laurora S et al (2006) 4-Hydroxynonenal inhibits telomerase activity and hTERT expression in human leukemic cell lines. Free Radic Biol Med 40, 1578-1591 https://doi.org/10.1016/j.freeradbiomed.2005.12.024
  57. Passos JF, Saretzki G, Ahmed S et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5, e110 https://doi.org/10.1371/journal.pbio.0050110
  58. von Zglinicki T, Petrie J and Kirkwood TB (2003) Telomere-driven replicative senescence is a stress response. Nat Biotechnol 21, 229-230
  59. Kim YM, Byun HO, Jee BA et al (2013) Implications of time-series gene expression profiles of replicative senescence. Aging Cell 12, 622-634 https://doi.org/10.1111/acel.12087
  60. Korovila I, Hugo M, Castro JP et al (2017) Proteostasis, oxidative stress and aging. Redox Biol 13, 550-567 https://doi.org/10.1016/j.redox.2017.07.008
  61. Rubinsztein DC, Marino G and Kroemer G (2011) Autophagy and aging. Cell 146, 682-695 https://doi.org/10.1016/j.cell.2011.07.030
  62. Seo YH, Jung HJ, Shin HT et al (2008) Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 7, 894-907 https://doi.org/10.1111/j.1474-9726.2008.00436.x
  63. Kurz DJ, Decary S, Hong Y and Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113 (Pt 20), 3613-3622 https://doi.org/10.1242/jcs.113.20.3613
  64. Urbanelli L, Buratta S, Sagini K, Tancini B and Emiliani C (2016) Extracellular Vesicles as New Players in Cellular Senescence. Int J Mol Sci 17
  65. Zhang Y, Zhao L, Wu Z, Chen X and Ma T (2017) Galantamine alleviates senescence of U87 cells induced by beta-amyloid through decreasing ROS production. Neurosci Lett 653, 183-188 https://doi.org/10.1016/j.neulet.2017.05.055
  66. Moore SA, Peterson RG, Felten DL and O'Connor BL (1981) Glycogen accumulation in tibial nerves of experimentally diabetic and aging control rats. J Neurol Sci 52, 289-303 https://doi.org/10.1016/0022-510X(81)90012-5
  67. Gertz HJ, Cervos-Navarro J, Frydl V and Schultz F (1985) Glycogen accumulation of the aging human brain. Mech Ageing Dev 31, 25-35 https://doi.org/10.1016/0047-6374(85)90024-7
  68. Spasic MR, Callaerts P and Norga KK (2009) AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. Neuroscientist 15, 309-316 https://doi.org/10.1177/1073858408327805
  69. Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187 https://doi.org/10.1038/nature01298
  70. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120, 449-460 https://doi.org/10.1016/j.cell.2005.02.002
  71. Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H and Komuro I (2004) Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J 23, 212-220 https://doi.org/10.1038/sj.emboj.7600045
  72. Demoulin JB, Ericsson J, Kallin A, Rorsman C, Ronnstrand L and Heldin CH (2004) Platelet-derived growth factor stimulates membrane lipid synthesis through activation of phosphatidylinositol 3-kinase and sterol regulatory element-binding proteins. J Biol Chem 279, 35392-35402 https://doi.org/10.1074/jbc.M405924200
  73. Porstmann T, Santos CR, Lewis C, Griffiths B and Schulze A (2009) A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans 37, 278-283 https://doi.org/10.1042/BST0370278
  74. Horton JD, Shah NA, Warrington JA et al (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100, 12027-12032 https://doi.org/10.1073/pnas.1534923100
  75. Shimomura I, Shimano H, Horton JD, Goldstein JL and Brown MS (1997) Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99, 838-845 https://doi.org/10.1172/JCI119247
  76. Burkewitz K, Zhang Y and Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20, 10-25 https://doi.org/10.1016/j.cmet.2014.03.002
  77. Kim YM, Song I, Seo YH and Yoon G (2013) Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells. Endocrinol Metab (Seoul) 28, 297-308 https://doi.org/10.3803/EnM.2013.28.4.297
  78. Nacarelli T, Azar A and Sell C (2015) Aberrant mTOR activation in senescence and aging: A mitochondrial stress response? Exp Gerontol 68, 66-70 https://doi.org/10.1016/j.exger.2014.11.004
  79. Xu S, Cai Y and Wei Y (2014) mTOR Signaling from Cellular Senescence to Organismal Aging. Aging Dis 5, 263-273
  80. Kuk JL, Saunders TJ, Davidson LE and Ross R (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8, 339-348 https://doi.org/10.1016/j.arr.2009.06.001
  81. Labbadia J and Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84, 435-464 https://doi.org/10.1146/annurev-biochem-060614-033955
  82. Madeo F, Zimmermann A, Maiuri MC and Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125, 85-93 https://doi.org/10.1172/JCI73946
  83. Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV and Blagosklonny MV (2009) Rapamycin decelerates cellular senescence. Cell Cycle 8, 1888-1895 https://doi.org/10.4161/cc.8.12.8606
  84. Huo Y, Iadevaia V and Proud CG (2011) Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis. Biochem Soc Trans 39, 446-450 https://doi.org/10.1042/BST0390446
  85. Serrano M (2012) Dissecting the role of mTOR complexes in cellular senescence. Cell Cycle 11, 2231-2232 https://doi.org/10.4161/cc.21065
  86. Fay JR, Steele V and Crowell JA (2009) Energy homeostasis and cancer prevention: the AMP-activated protein kinase. Cancer Prev Res (Phila) 2, 301-309 https://doi.org/10.1158/1940-6207.CAPR-08-0166
  87. Wirth M, Joachim J and Tooze SA (2013) Autophagosome formation--the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol 23, 301-309 https://doi.org/10.1016/j.semcancer.2013.05.007
  88. Maurer U, Preiss F, Brauns-Schubert P, Schlicher L and Charvet C (2014) GSK-3 - at the crossroads of cell death and survival. J Cell Sci 127, 1369-1378 https://doi.org/10.1242/jcs.138057
  89. Li TY, Lin SY and Lin SC (2013) Mechanism and physiological significance of growth factor-related autophagy. Physiology (Bethesda) 28, 423-431 https://doi.org/10.1152/physiol.00023.2013
  90. Mazucanti CH, Cabral-Costa JV, Vasconcelos AR, Andreotti DZ, Scavone C and Kawamoto EM (2015) Longevity Pathways (mTOR, SIRT, Insulin/IGF-1) as Key Modulatory Targets on Aging and Neurodegeneration. Curr Top Med Chem 15, 2116-2138 https://doi.org/10.2174/1568026615666150610125715
  91. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24, 604-612 https://doi.org/10.1016/j.tig.2008.10.002
  92. Cuervo AM and Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24, 92-104 https://doi.org/10.1038/cr.2013.153
  93. Kim YM, Seo YH, Park CB, Yoon SH and Yoon G (2010) Roles of GSK3 in metabolic shift toward abnormal anabolism in cell senescence. Ann N Y Acad Sci 1201, 65-71 https://doi.org/10.1111/j.1749-6632.2010.05617.x
  94. Nacarelli T, Azar A and Sell C (2016) Mitochondrial stress induces cellular senescence in an mTORC1-dependent manner. Free Radic Biol Med 95, 133-154 https://doi.org/10.1016/j.freeradbiomed.2016.03.008
  95. Emerling BM, Weinberg F, Snyder C et al (2009) Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med 46, 1386-1391 https://doi.org/10.1016/j.freeradbiomed.2009.02.019