DOI QR코드

DOI QR Code

Detailed Mode of Action of Arabinan-Debranching α-ʟ-Arabinofuranosidase GH51 from Bacillus velezensis

  • Oh, Gyo Won (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kang, Yewon (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Choi, Chang-Yun (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kang, So-Yeong (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kang, Jung-Hyun (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Lee, Min-Jae (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Han, Nam Soo (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kim, Tae-Jip (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
  • Received : 2018.11.20
  • Accepted : 2018.12.03
  • Published : 2019.01.28

Abstract

The gene encoding an ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ (BvAF) GH51 from Bacillus velezensis FZB42 was cloned and expressed in Escherichia coli. The corresponding open reading frame consists of 1,491 nucleotides which encode 496 amino acids with the molecular mass of 56.9 kDa. BvAF showed the highest activity against sugar beet (branched) arabinan in 50 mM sodium acetate buffer (pH 6.0) at $45^{\circ}C$. However, it could hardly hydrolyze debranched arabinan and arabinoxylans. The time-course hydrolyses of branched arabinan and arabinooligosaccharides (AOS) revealed that BvAF is a unique exo-hydrolase producing exclusively ${\text\tiny{L}}-arabinose$. BvAF could cleave ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-{\text\tiny{L}}-arabinofuranosidic$ linkages of the branched substrates to produce the debranched forms of arabinan and AOS. Although the excessive amount of BvAF could liberate ${\text\tiny{L}}-arabinose$ from linear AOS, it was extremely lower than that on branched AOS. In conclusion, BvAF is the arabinan-specific exo-acting ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ possessing high debranching activity towards ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-linked$ branches of arabinan, which can facilitate the successive degradation of arabinan by $endo-{\alpha}-(1,5)-{\text\tiny{L}}-arabinanase$.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. Hizukuri S. 1999. Nutritional and physiological functions and uses of L-arabinose. J. Appl. Glycosci. 46: 159-165. https://doi.org/10.5458/jag.46.159
  2. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
  3. Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraete W, Van de Wiele T. 2007. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci. Technol. 18: 64-71. https://doi.org/10.1016/j.tifs.2006.08.004
  4. Vigsnaes LK, Holck J, Meyer AS, Licht TR. 2011. In vitro fermentation of sugar beet arabino-oligosaccharides by fecal microbiota obtained from patients with ulcerative colitis to selectively stimulate the growth of Bifidobacterium spp. and Lactobacillus spp. Appl. Environ. Microbiol. 77: 8336-8344. https://doi.org/10.1128/AEM.05895-11
  5. Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, et al. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131: 50-56. https://doi.org/10.1016/j.carbpol.2015.05.022
  6. Lim YR, Yeom SJ, Kim YS, Oh DK. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102: 4277-4280. https://doi.org/10.1016/j.biortech.2010.12.039
  7. Park JM, Jang MU, Oh GW, Lee EH, Kang JH, Song YB, et al. 2015. Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases. J. Microbiol. Biotechnol. 25: 227-233. https://doi.org/10.4014/jmb.1411.11055
  8. Saha BC. 2000. ${\alpha}$-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423. https://doi.org/10.1016/S0734-9750(00)00044-6
  9. Numan MT, Bhosle NB. 2006. ${\alpha}$-L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260. https://doi.org/10.1007/s10295-005-0072-1
  10. Wilkens C, Andersen S, Dumon C, Berrin JG, Svensson B. 2017. GH62 arabinofuranosidases: Structure, function and applications. Biotechnol. Adv. 35: 792-804. https://doi.org/10.1016/j.biotechadv.2017.06.005
  11. Hovel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, et al. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 ${\alpha}$-L-arabinofuranosidase. EMBO J. 22: 4922-4932. https://doi.org/10.1093/emboj/cdg494
  12. Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, Kaneko S. 2010. Crystal structure of an exo-1,5-${\alpha}$-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. J. Biol. Chem. 285: 34134-34143. https://doi.org/10.1074/jbc.M110.164251
  13. de Sa-Nogueira I, Nogueira TV, Soares S, de Lencastre H. 1997. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143: 957-969. https://doi.org/10.1099/00221287-143-3-957
  14. Inacio JM, Correia IL, de Sa-Nogueira I. 2008. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 154: 2719-2729. https://doi.org/10.1099/mic.0.2008/018978-0
  15. Shulami S, Raz-Pasteur A, Tabachnikov O, Gilead-Gropper S, Shner I, Shoham Y. 2011. The L-arabinan utilization system of Geobacillus stearothermophilus. J. Bacteriol. 193: 2838-2850. https://doi.org/10.1128/JB.00222-11
  16. Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429. https://doi.org/10.1128/AEM.02912-08
  17. Leal TF, de Sa-Nogueira I. 2004. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241: 41-48. https://doi.org/10.1016/j.femsle.2004.10.003
  18. Inacio JM, de Sa-Nogueira I. 2008. Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J. Bacteriol. 190: 4272-4280. https://doi.org/10.1128/JB.00162-08
  19. Park JM, Han NS, Kim TJ. 2007. Rapid detection and isolation of known and putative ${\alpha}$-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489.
  20. Park JM, Jang MU, Kang JH, Kim MJ, Lee SW, Song YB, et al. 2012. Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. J. Microbiol. 50: 1041-1046. https://doi.org/10.1007/s12275-012-2489-3
  21. Miller GL. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  22. Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "Operational group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8: 22.
  23. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. 2018. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491. https://doi.org/10.3389/fmicb.2018.02491
  24. Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G. 2018. Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech. 8: 253. https://doi.org/10.1007/s13205-018-1270-7
  25. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. https://doi.org/10.1038/nbt1325
  26. Miyazaki K. 2005. Hyperthermophilic ${\alpha}$-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9: 399-406. https://doi.org/10.1007/s00792-005-0455-2
  27. Dumbrepatil A, Park JM, Jung TY, Song HN, Jang MU, Han NS, et al. 2012. Structural analysis of ${\alpha}$-L-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J. Microbiol. Biotechnol. 22: 1724-1730. https://doi.org/10.4014/jmb.1208.08043
  28. Lim YR, Yoon RY, Seo ES, Kim YS, Park CS, Oh DK. 2010. Hydrolytic properties of a thermostable ${\alpha}$-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. J. Appl. Microbiol. 109: 1188-1197. https://doi.org/10.1111/j.1365-2672.2010.04744.x