DOI QR코드

DOI QR Code

Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications

  • Peddigari, Mahesh (Functional Ceramics Group, Korea Institute of Materials Science) ;
  • Palneedi, Haribabu (Functional Ceramics Group, Korea Institute of Materials Science) ;
  • Hwang, Geon-Tae (Functional Ceramics Group, Korea Institute of Materials Science) ;
  • Ryu, Jungho (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2018.08.13
  • Accepted : 2018.08.28
  • Published : 2019.01.31

Abstract

Dielectric materials with inherently high power densities and fast discharge rates are particularly suitable for pulsed power capacitors. The ongoing multifaceted efforts on developing these capacitors are focused on improving their energy density and storage efficiency, as well as ensuring their reliable operation over long periods, including under harsh environments. This review article summarizes the studies that have been conducted to date on the development of high-performance dielectric ceramics for employment in pulsed power capacitors. The energy storage characteristics of various lead-based and lead-free ceramics belonging to linear and nonlinear dielectrics are discussed. Various strategies such as mechanical confinement, self-confinement, core-shell structuring, glass incorporation, chemical modifications, and special sintering routes have been adopted to tailor the electrical properties and energy storage performances of dielectric ceramics. In addition, this review article highlights the challenges and opportunities associated with the development of pulsed power capacitors.

Keywords

References

  1. C. A. Randall, H. Ogihara, J. R. Kim, G. Y. Yang, C. S. Stringer, S. Trolier-McKinstry, and M. Lanagan, "High Temperature and High Energy Density Dielectric Materials"; pp. 346-351 in Proceedings of the 2009 IEEE Pulsed Power Conference. IEEE, Washington, DC, 2009.
  2. T. D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad, "Advanced Polymeric Dielectrics for High Energy Density Applications," Prog. Mater. Sci., 83 236-69 (2016). https://doi.org/10.1016/j.pmatsci.2016.05.001
  3. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan, and H. Liu, "Homogeneous/Inhomogeneous-Structured Dielectrics and Their Energy-Storage Performances," Adv. Mater., 29 [20] 1601727 (2017). https://doi.org/10.1002/adma.201601727
  4. J. R. Laghari and W. J. Sarjeant, "Energy-Storage Pulsed-Power Capacitor Technology," IEEE Trans. Power Electron., 7 [1] 251-57 (1992). https://doi.org/10.1109/63.124597
  5. Prateek, V. K. Thakur, and R. K. Gupta, "Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects," Chem. Rev., 116 [7] 4260-317 (2016). https://doi.org/10.1021/acs.chemrev.5b00495
  6. H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, and J. Ryu, "High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook," Adv. Funct. Mater., 28 [42] 1803665 (2018). https://doi.org/10.1002/adfm.201803665
  7. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, J. H. Ploehn, and H.-C. Zur Loye, "Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage," Materials, 2 [4] 1697-733 (2009). https://doi.org/10.3390/ma2041697
  8. X. Hao, "A Review on the Dielectric Materials for High Energy-Storage Application," J. Adv. Dielectr., 03 [01] 1330001 (2013). https://doi.org/10.1142/S2010135X13300016
  9. Z.-M. Dang, J.-K. Yuan, S.-H. Yao, and R.-J. Liao, "Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage," Adv. Mater., 25 [44] 6334-65 (2013). https://doi.org/10.1002/adma.201301752
  10. Y. Shen, Y. Lin, and Q. M. Zhang, "Polymer Nanocomposites with High Energy Storage Densities," MRS Bull. 40 [9] 753-59 (2015). https://doi.org/10.1557/mrs.2015.199
  11. Q. Chen, Y. Shen, S. Zhang, and Q. M. Zhang, "Polymer-Based Dielectrics with High Energy Storage Density," Ann. Rev. Mater. Res., 45 [1] 433-58 (2015). https://doi.org/10.1146/annurev-matsci-070214-021017
  12. Z.-M. Dang, M.-S. Zheng, P.-H. Hu, and J.-W. Zha, "Dielectric Polymer Materials for Electrical Energy Storage and Dielectric Physics: A Guide," J. Adv. Phys., 4 [4] 302-13 (2015). https://doi.org/10.1166/jap.2015.1203
  13. A. Chauhan, S. Patel, R. Vaish, and R. C. Bowen, "Anti-Ferroelectric Ceramics for High Energy Density Capacitors," Materials, 8 [12] 8009-31 (2015). https://doi.org/10.3390/ma8125439
  14. D. P. Shay, N. J. Podraza, and C. A. Randall, "High Energy Density, High Temperature Capacitors Utilizing Mn- Doped $0.8CaTiO_3-0.2CaHfO_3$ Ceramics," J. Am. Ceram. Soc., 95 [4] 1348-55 (2012). https://doi.org/10.1111/j.1551-2916.2011.04962.x
  15. J. Zheng, G. H. Chen, X. Chen, Q. N. Li, J. W. Xu, C. L. Yuan, and C. R. Zhou, "Dielectric Properties and Energy Storage Behaviors in $ZnNb_2O_6-Doped\;Sr_{0.97}Nd_{0.02}TiO_3$ Ceramics," J. Mater. Sci. Mater. Electron., 27 [4] 3759-64 (2016). https://doi.org/10.1007/s10854-015-4219-1
  16. H. Y. Zhou, X. N. Zhu, G. R. Ren, and X. M. Chen, "Enhanced Energy Storage Density and Its Variation Tendency in $CaZr_{x}Ti_{1-x}O_3$ Ceramics," J. Alloys Compd., 688 687-91 (2016). https://doi.org/10.1016/j.jallcom.2016.07.078
  17. Z. C. Li, G. H. Chen, C. L. Yuan, C. R. Zhou, T. Yang, and Y. Yang, "Effects of $NiNb_2O_6$ Doping on Dielectric Property, Microstructure and Energy Storage Behavior of $Sr_{0.97}La_{0.02}TiO_3$ Ceramics," J. Mater. Sci. Mater. Electron., 28 [2] 1151-58 (2017). https://doi.org/10.1007/s10854-016-5640-9
  18. Z. Yao, Q. Luo, G. Zhang, H. Hao, M. Cao, and H. Liu, "Improved Energy-Storage Performance and Breakdown Enhancement Mechanism of Mg-Doped $SrTiO_3$ Bulk Ceramics for High Energy Density Capacitor Applications," J. Mater. Sci. Mater. Electron., 28 [15] 11491-99 (2017). https://doi.org/10.1007/s10854-017-6945-z
  19. G. Zhao, Y. Li, H. Liu, J. Xu, H. Hao, M. Cao, and Z. Yu, "Effect of $SiO_2$ Additives on the Microstructure and Energy Storage Density of $SrTiO_3$ Ceramics," J. Ceram. Process. Res., 13 [3] 310-14 (2012). https://doi.org/10.36410/JCPR.2012.13.3.310
  20. H. Y. Zhou, X. Q. Liu, X. L. Zhu, and X. M. Chen, "$CaTiO_3$ Linear Dielectric Ceramics with Greatly Enhanced Dielectric Strength and Energy Storage Density," J. Am. Ceram. Soc., 101 [5] 1999-2008 (2017). https://doi.org/10.1111/jace.15371
  21. F. Zeng, M. Cao, L. Zhang, M. Liu, H. Hao, Z. Yao, and H. Liu, "Microstructure and Dielectric Properties of $SrTiO_3$ Ceramics by Controlled Growth of Silica Shells on $SrTiO_3$ Nanoparticles," Ceram. Int., 43 [10] 7710-16 (2017). https://doi.org/10.1016/j.ceramint.2017.03.073
  22. H. Yang, F. Yan, Y. Lin, and T. Wang, "Enhanced Recoverable Energy Storage Density and High Efficiency of $SrTiO_3$-Based Lead-Free Ceramics," Appl. Phys. Lett., 111 [25] 253903 (2017). https://doi.org/10.1063/1.5000980
  23. B. Luo, X. Wang, E. Tian, H. Song, H. Wang, and L. Li, "Enhanced Energy-Storage Density and High Efficiency of Lead-Free $CaTiO_3-BiScO_3$ Linear Dielectric Ceramics," ACS Appl. Mater. Interfaces, 9 [23] 19963-72 (2017). https://doi.org/10.1021/acsami.7b04175
  24. N. H. Fletcher, A. D. Hilton, and B. W. Ricketts, "Optimization of Energy Storage Density in Ceramic Capacitors," J. Phys. D: Appl. Phys., 29 [1] 253 (1996). https://doi.org/10.1088/0022-3727/29/1/037
  25. G. Dong, S. Ma, J. Du, and J. Cui, "Dielectric Properties and Energy Storage Density in Zno-Doped $Ba_{0.3}Sr_{0.7}TiO_3$ Ceramics," Ceram. Int., 35 [5] 2069-75 (2009). https://doi.org/10.1016/j.ceramint.2008.11.003
  26. Q. Zhang, L. Wang, J. Luo, Q. Tang, and J. Du, "$Ba_{0.4}Sr_{0.6}TiO_3/MgO$ Composites with Enhanced Energy Storage Density and Low Dielectric Loss for Solid-State Pulse-Forming Line," Int. J. Appl. Ceram. Technol., 7 [s1] E124-28 (2009). https://doi.org/10.1111/j.1744-7402.2009.02456.x
  27. Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, and Z. Yu, "Effect of Grain Size on the Energy Storage Properties of $Ba_{0.4}Sr_{0.6}TiO_3$ Paraelectric Ceramics," J. Eur. Ceram. Soc., 34 [5] 1209-17 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.039
  28. Y. Shi, H. Liu, H. Hao, M. Cao, Z. Yao, Z. Song, G. Li, W. Tang, and J. Xie, "Investigation of Dielectric Properties for $Ba_{0.4}Sr_{0.6}TiO_3$ Ceramics with Various Grain Sizes," Ferroelectrics, 487 [1] 109-21 (2015). https://doi.org/10.1080/00150193.2015.1071176
  29. Z. Song, H. Liu, H. Hao, S. Zhang, M. Cao, Z. Yao, Z. Wang, W. Hu, Y. Shi, and B. Hu, "The Effect of Grain Boundary on the Energy Storage Properties of $(Ba_{0.4}sr_{0.6})Tio_3$ Paraelectric Ceramics by Varying Grain Sizes," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62 [4] 609-16 (2015). https://doi.org/10.1109/TUFFC.2014.006927
  30. Z. Song, S. Zhang, H. Liu, H. Hao, M. Cao, Q. Li, Q. Wang, Z. Yao, Z. Wang, and T. Lanagan Michael, "Improved Energy Storage Properties Accompanied by Enhanced Interface Polarization in Annealed Microwave-Sintered BST," J. Am. Ceram. Soc., 98 [10] 3212-22 (2015). https://doi.org/10.1111/jace.13741
  31. Y. H. Huang, Y. J. Wu, J. Li, B. Liu, and X. M. Chen, "Enhanced Energy Storage Properties of Barium Strontium Titanate Ceramics Prepared by Sol-Gel Method and Spark Plasma Sintering," J. Alloys Compd., 701 439-46 (2017). https://doi.org/10.1016/j.jallcom.2017.01.150
  32. Y. J. Wu, Y. H. Huang, N. Wang, J. Li, M. S. Fu, and X. M. Chen, "Effects of Phase Constitution and Microstructure on Energy Storage Properties of Barium Strontium Titanate Ceramics," J. Eur. Ceram. Soc., 37 [5] 2099-104 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.12.052
  33. Q. Jin, Y.-P. Pu, C. Wang, Z.-Y. Gao, and H.-Y. Zheng, "Enhanced Energy Storage Performance of $Ba_{0.4}Sr_{0.6}TiO_3$ Ceramics: Influence of Sintering Atmosphere," Ceram. Int. 43 S232-38 (2017). https://doi.org/10.1016/j.ceramint.2017.05.229
  34. X. Y. Ye, Y. M. Li, and J. J. Bian, "Dielectric and Energy Storage Properties of Mn-Doped $Ba_{0.3}Sr_{0.475}La_{0.12}Ce_{0.03}TiO_3$ Dielectric Ceramics," J. Eur. Ceram. Soc., 37 [1] 107-14 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.08.002
  35. Y. Gao, H. Liu, Z. Yao, H. Hao, Z. Yu, and M. Cao, "Effect of Layered Structure on Dielectric Properties and Energy Storage Density in $xBa_{0.7}Sr_{0.3}TiO_3-SrTiO_3$ Multilayer Ceramics," Ceram. Int., 43 [11] 8418-23 (2017). https://doi.org/10.1016/j.ceramint.2017.03.190
  36. J. Wang, C. Xu, B. Shen, and J. Zhai, "Enhancing Energy Storage Density of (Ba, Sr)$TiO_3$ Ceramic Particles by Coating with $Al_2O_3\;and\;SiO_2$," J. Mater. Sci. Mater. Electron., 24 [9] 3309-14 (2013). https://doi.org/10.1007/s10854-013-1248-5
  37. X. Lu, Y. Tong, H. Talebinezhad, L. Zhang, and Z. Y. Cheng, "Dielectric and Energy-Storage Performance of $Ba_{0.5}Sr_{0.5}TiO_3-SiO_2$ Ceramic-Glass Composites," J. Alloys Compd., 745 127-34 (2018). https://doi.org/10.1016/j.jallcom.2018.02.173
  38. Y. H. Huang, Y. J. Wu, B. Liu, T. N. Yang, J. J. Wang, J. Li, L.-Q. Chen, and X. M. Chen, "From Core-Shell $Ba_{0.4}Sr_{0.6}TiO_3@SiO_2$ Particles to Dense Ceramics with High Energy Storage Performance by Spark Plasma Sintering," J. Mater. Chem. A, 6 [10] 4477-84 (2018). https://doi.org/10.1039/C7TA10821D
  39. H. Yang, F. Yan, Y. Lin, and T. Wang, "Enhanced Energy Storage Properties of $Ba_{0.4}Sr_{0.6}TiO_3$ Lead-Free Ceramics with $Bi_2O_3-B_2O_3-SiO_2$ Glass Addition," J. Eur. Ceram. Soc., 38 [4] 1367-73 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.058
  40. G.-F. Zhang, H. Liu, Z. Yao, M. Cao, and H. Hao, "Effects of Ca Doping on the Energy Storage Properties of (Sr, Ca)$TiO_3$ Paraelectric Ceramics," J. Mater. Sci. Mater. Electron., 26 [5] 2726-32 (2015). https://doi.org/10.1007/s10854-015-2749-1
  41. M. Zhou, R. Liang, Z. Zhou, C. Xu, X. Nie, X. Chen, and X. Dong, "High Energy Storage Properties of $(Ni_{1/3}Nb_{2/3})^{4+}$ Complex-Ion Modified $(Ba_{0.85}Ca_{0.15})(Zr_{0.10}Ti_{0.90})O_3$ Ceramics," Mater. Res. Bull., 98 166-72 (2018). https://doi.org/10.1016/j.materresbull.2017.10.005
  42. X. Dong, H. Chen, M. Wei, K. Wu, and J. Zhang, "Structure, Dielectric and Energy Storage Properties of $BaTiO_3$ Ceramics Doped with $YNbO_4$," J. Alloys Compd., 744 721-27 (2018). https://doi.org/10.1016/j.jallcom.2018.01.276
  43. F. Gao, X. Dong, C. Mao, F. Cao, and G. Wang, "c/a Ratio-Dependent Energy-Storage Density in $(0.9-x)Bi_{0.5}Na_{0.5}TiO_3-xBaTiO_3-0.1K_{0.5}Na_{0.5}NbO_3 $Ceramics," J. Am. Ceram. Soc., 94 [12] 4162-64 (2011). https://doi.org/10.1111/j.1551-2916.2011.04912.x
  44. G. Viola, H. Ning, M. J. Reece, R. Wilson, T. M. Correia, P. Weaver, M. G. Cain, and H. Yan, "Reversibility in Electric Field-Induced Transitions and Energy Storage Properties of Bismuth-Based Perovskite Ceramics," J. Phys. D: Appl. Phys., 45 [35] 355302 (2012). https://doi.org/10.1088/0022-3727/45/35/355302
  45. Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M. T. Lanagan, H. Hao, Z. Yao, and H. Liu, "Energy-Storage Properties of $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3-KNbO_3$ Ceramics Fabricated by Wet-Chemical Method," J. Eur. Ceram. Soc., 37 [1] 99-106 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.07.011
  46. V. S. Puli, D. K. Pradhan, D. B. Chrisey, M. Tomozawa, G. L. Sharma, J. F. Scott, and R. S. Katiyar, "Structure, Dielectric, Ferroelectric, and Energy Density Properties of (1-x)BZT-xBCT Ceramic Capacitors for Energy Storage Applications," J. Mater. Sci., 48 [5] 2151-57 (2013). https://doi.org/10.1007/s10853-012-6990-1
  47. V. S. Puli, D. K. Pradhan, B. C. Riggs, D. B. Chrisey, and R. S. Katiyar, "Structure, Ferroelectric, Dielectric and Energy Storage Studies of $Ba_{0.70}Ca_{0.30}TiO_3,\;Ba(Zr_{0.20}Ti_{0.80})O_3$ Ceramic Capacitors," Integr. Ferroelectr., 157 [1] 139-46 (2014). https://doi.org/10.1080/10584587.2014.912939
  48. Y. Zhang, Y. Li, H. Zhu, Z. Fu, and Q. Zhang, "Sintering Temperature Dependence of Dielectric Properties and Energy-Storage Properties in $(Ba,Zr)TiO_3$ Ceramics," J. Mater. Sci. Mater. Electron., 28 [1] 514-18 (2017). https://doi.org/10.1007/s10854-016-5552-8
  49. T. Wang, X. Wei, Q. Hu, L. Jin, Z. Xu, and Y. Feng, "Effects of $ZnNb_2O_6$ Addition on $BaTiO_3$ Ceramics for Energy Storage," Mater. Sci. Eng. B, 178 [16] 1081-86 (2013). https://doi.org/10.1016/j.mseb.2013.07.003
  50. R. Ma, B. Cui, M. Shangguan, S. Wang, Y. Wang, Z. Chang, and Y. Wang, "A Novel Double-Coating Approach to Prepare Fine-Grained $BaTiO_3@La_2O_3@SiO_2$ Dielectric Ceramics for Energy Storage Application," J. Alloys Compd., 690 438-45 (2017). https://doi.org/10.1016/j.jallcom.2016.08.062
  51. J.-P. Ma, X.-M. Chen, W.-Q. Ouyang, J. Wang, H. Li, and J.-L. Fang, "Microstructure, Dielectric, and Energy Storage Properties of $BaTiO_3$ Ceramics Prepared Via Cold Sintering," Ceram. Int., 44 [4] 4436-41 (2018). https://doi.org/10.1016/j.ceramint.2017.12.044
  52. J. Wan, Y. Pu, C. Hui, C. Cui, and Y. Guo, "Synthesis and Characterizations of $NaNbO_3$ Modified $0.92BaTiO_3-0.08K_{0.5}Bi_{0.5}TiO_3$ Ceramics for Energy Storage Applications," J. Mater. Sci. Mater. Electron., 29 [6] 5158-62 (2018). https://doi.org/10.1007/s10854-017-8480-3
  53. B. Qu, H. Du, Z. Yang, and Q. Liu, "Large Recoverable Energy Storage Density and Low Sintering Temperature in Potassium-Sodium Niobate-Based Ceramics for Multilayer Pulsed Power Capacitors," J. Am. Ceram. Soc., 100 [4] 1517-26 (2017). https://doi.org/10.1111/jace.14728
  54. T. F. Zhang, X. G. Tang, X. X. Huang, Q. X. Liu, Y. P. Jiang, and Q. F. Zhou, "High-Temperature Dielectric Relaxation Behaviors of Relaxer-Like $PbZrO_3-SrTiO_3$ Ceramics for Energy-Storage Applications," Energy Technol., 4 [5] 633-40 (2016). https://doi.org/10.1002/ente.201500436
  55. A. N. Bakshi, A. A. B. Moghal, N. A. Madhar, S. Patel, and R. Vaish, "Effect of Stress on Energy Conversion and Storage Characteristics of (1-x-y)PIN-xPMN-yPT Single Crystals," Ferroelectr. Lett. Sect., 42 [4-6] 107-14 (2015). https://doi.org/10.1080/07315171.2015.1068507
  56. A. Chauhan, S. Patel, and R. Vaish, "Effect of Directional Mechanical Confinement on the Electrical Energy Storage Density in $68Pb(Mn_{1/3}Nb_{2/3})O_3-32PbTiO_3$ Single Crystals," Ferroelectrics, 478 [1] 40-53 (2015). https://doi.org/10.1080/00150193.2015.1011028
  57. T. F. Zhang, X. G. Tang, Q. X. Liu, Y. P. Jiang, X. X. Huang, and Q. F. Zhou, "Energy-Storage Properties and High-Temperature Dielectric Relaxation Behaviors of Relaxor Ferroelectric $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ceramics," J. Phys. D: Appl. Phys., 49 [9] 095302 (2016). https://doi.org/10.1088/0022-3727/49/9/095302
  58. B. Li, Q.-X. Liu, X.-G. Tang, T.-F. Zhang, Y.-P. Jiang, W.-H. Li, and J. Luo, "Antiferroelectric to Relaxor Ferroelectric Phase Transition in PbO Modified $(Pb_{0.97}La_{0.02})(Zr_{0.95}Ti_{0.05})O_3$ Ceramics with a Large Energy-Density for Dielectric Energy Storage," RSC Adv., 7 [68] 43327-33 (2017). https://doi.org/10.1039/C7RA08621K
  59. J. Gao, Y. Liu, Y. Wang, D. Wang, L. Zhong, and X. Ren, "High Temperature-Stability of $(Pb_{0.9}La_{0.1})(Zr_{0.65}Ti_{0.35})O_3$ Ceramic for Energy-Storage Applications at Finite Electric Field Strength," Scr. Mater., 137 114-18 (2017). https://doi.org/10.1016/j.scriptamat.2017.05.011
  60. H. R. Jo and C. S. Lynch, "A High Energy Density Relaxor Antiferroelectric Pulsed Capacitor Dielectric," J. Appl. Phys., 119 [2] 024104 (2016). https://doi.org/10.1063/1.4939617
  61. H. Ogihara, A. Randall Clive, and S. Trolier-McKinstry, "High-Energy Density Capacitors Utilizing 0.7 $BaTiO_3-0.3BiScO_3$ Ceramics," J. Am. Ceram. Soc., 92 [8] 1719-24 (2009). https://doi.org/10.1111/j.1551-2916.2009.03104.x
  62. T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, "Relaxor Ferroelectric $BaTiO_3-Bi(Mg_{2/3}Nb_{1/3})O_3$ Ceramics for Energy Storage Application," J. Am. Ceram. Soc., 98 [2] 559-66 (2014). https://doi.org/10.1111/jace.13325
  63. W.-B. Li, D. Zhou, and L.-X. Pang, "Enhanced Energy Storage Density by Inducing Defect Dipoles in Lead Free Relaxor Ferroelectric $BaTiO_3$-Based Ceramics," Appl. Phys. Lett., 110 [13] 132902 (2017). https://doi.org/10.1063/1.4979467
  64. Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, and X. Wei, "Dielectric and Temperature Stable Energy Storage Properties of $0.88BaTiO_3-0.12Bi(Mg_{1/2}Ti_{1/2})O_3$ Bulk Ceramics," J. Alloys Compd., 640 416-20 (2015). https://doi.org/10.1016/j.jallcom.2015.02.225
  65. Q. Hu, T. Wang, L. Zhao, L. Jin, Z. Xu, and X. Wei, "Dielectric and Energy Storage Properties of $BaTiO_3-Bi(Mg_{1/2}Ti_{1/2})O_3$ Ceramic: Influence of Glass Addition and Biasing Electric Field," Ceram. Int., 43 [1] 35-9 (2017). https://doi.org/10.1016/j.ceramint.2016.08.005
  66. L. Wu, X. Wang, and L. Li, "Lead-Free $BaTiO_3-Bi(Zn_{2/3}Nb_{1/3})O_3$ Weakly Coupled Relaxor Ferroelectric Materials for Energy Storage," RSC Adv., 6 [17] 14273-82 (2016). https://doi.org/10.1039/C5RA21261H
  67. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y. Wang, L. Guo, W. Tai, and H. Wei, "Lead-Free $Batio3-Bi_{0.5}Na_{0.5}TiO_3-Na_{0.73}Bi_{0.09}NbO_3$ Relaxor Ferroelectric Ceramics for High Energy Storage," J. Eur. Ceram. Soc., 37 [10] 3303-11 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.071
  68. Y. Goh, B.-H. Kim, H. Bae, and D.-K. Kwon, "Improved Temperature Stability in Dielectric Properties of $0.8Ba-TiO_3-(0.2-x)NaNbO_3-xBi(Mg_{1/2}Ti_{1/2})O_3$ Relaxors," J. Korean Ceram. Soc., 53 [2] 178-83 (2016). https://doi.org/10.4191/kcers.2016.53.2.178
  69. L. Wu, X. Wang, and L. Li, "Core-Shell $BaTiO_{3}@BiScO_3$ Particles for Local Graded Dielectric Ceramics with Enhanced Temperature Stability and Energy Storage Capability," J. Alloys Compd., 688 113-21 (2016). https://doi.org/10.1016/j.jallcom.2016.07.057
  70. H. Yang, F. Yan, Y. Lin, and T. Wang, "Enhanced Energy-Storage Properties of Lanthanum-Doped $Bi_{0.5}Na_{0.5}TiO_3$-Based Lead-Free Ceramics," Energy Technol., 6 [2] 357-65 (2017). https://doi.org/10.1002/ente.201700504
  71. H.-P. Kim, C. W. Ahn, Y. Hwang, H.-Y. Lee, and W. Jo, "Strategies of a Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs," J. Korean Ceram. Soc., 54 [2] 86-95 (2017). https://doi.org/10.4191/kcers.2017.54.2.12
  72. X. Liu, C.-L. Yuan, X.-Y. Liu, F.-H. Luo, Q. Feng, J. Xu, G.-H. Chen, and C.-R. Zhou, "Microstructures, Electrical Behavior and Energy-Storage Properties of $Ba_{0.06}Na_{0.47}Bi_{0.47}TiO_3-Ln_{1/3}NbO_3$ (Ln = la, Nd, Sm) Ceramics," Mater. Chem. Phys., 181 444-51 (2016). https://doi.org/10.1016/j.matchemphys.2016.06.080
  73. Q.-N. Li, C.-R. Zhou, J.-W. Xu, L. Yang, X. Zhang, W.-D. Zeng, C.-L. Yuan, G.-H. Chen, and G.-H. Rao, "Ergodic Relaxor State with High Energy Storage Performance Induced by Doping $Sr_{0.85}Bi_{0.1}TiO_3\;in\;Bi_{0.5}Na_{0.5}TiO_3$ Ceramics," J. Electron. Mater., 45 [10] 5146-51 (2016). https://doi.org/10.1007/s11664-016-4731-y
  74. X. Zhou, C. Yuan, Q. Li, Q. Feng, C. Zhou, X. Liu, Y. Yang, and G. Chen, "Energy Storage Properties and Electrical Behavior of Lead-Free $(1-x)Ba_{0.04}Bi_{0.48}Na_{0.48}TiO_3-xSrZrO_3$ Ceramics," J. Mater. Sci. Mater. Electron., 27 [4] 3948-56 (2016) https://doi.org/10.1007/s10854-015-4247-x
  75. Y. Pu, M. Yao, L. Zhang, and P. Jing, "High Energy Storage Density of $0.55Bi_{0.5}Na_{0.5}TiO_3-0.45Ba_{0.85}Ca_{0.15}Ti_{0.9-x}Zr_{0.1}Sn_xO_3$ Ceramics," J. Alloys Compd., 687 689-95 (2016). https://doi.org/10.1016/j.jallcom.2016.06.181
  76. Y. Pu, L. Zhang, M. Yao, W. Ge, and M. Chen, "Improved Energy Storage Properties of Microwave Sintered 0.475BNT-0.525BCTZ-xwt%MgO Ceramics," Mater. Lett., 189 232-35 (2017). https://doi.org/10.1016/j.matlet.2016.12.020
  77. Y. Pu, M. Yao, L. Zhang, and M. Chen, "Enhanced Energy Storage Density of $0.55Bi_{0.5}Na_{0.5}TiO_3-0.45Ba_{0.85}Ca_{0.15}Ti_{0.85}Zr_{0.1}Sn_{0.05}O_3$ with Mgo Addition," J. Alloys Compd., 702 171-77 (2017). https://doi.org/10.1016/j.jallcom.2017.01.249
  78. L. Zhang, X. Pu, M. Chen, S. Bai, and Y. Pu, "Influence of Basno3 Additive on the Energy Storage Properties of $Na_{0.5}Bi_{0.5}TiO_3$-Based Relaxor Ferroelectrics," J. Eur. Ceram. Soc., 38 [5] 2304-11 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.053
  79. H. S. Han, I. K. Hong, Y.-M. Kong, J. S. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-Free $0.94(Bi_{1/2}Na_{1/2})TiO_{3}-0.06BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016). https://doi.org/10.4191/kcers.2016.53.2.145
  80. J. Hao, Z. Xu, R. Chu, W. Li, D. Juan, and F. Peng, "Enhanced Energy-Storage Properties of $(1-x)[(1-y)(Bi_{0.5}Na_{0.5})TiO_{3}-y(Bi_{0.5}K_{0.5})TiO_3]-x(K_{0.5}Na_{0.5})NbO_3$ Lead-Free Ceramics," Solid State Commun., 204 19-22 (2015). https://doi.org/10.1016/j.ssc.2014.12.004
  81. Q. Xu, M. T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, and H. Liu, "Dielectric Behavior and Impedance Spectroscopy in Lead-Free BNT-BT-NBN Perovskite Ceramics for Energy Storage," Ceram. Int., 42 [8] 9728-36 (2016). https://doi.org/10.1016/j.ceramint.2016.03.062
  82. X. Liu, H. Du, X. Liu, J. Shi, and H. Fan, "Energy Storage Properties of $BiTi_{0.5}Zn_{0.5}O_{3}-Bi_{0.5}Na_{0.5}TiO_{3}-BaTiO_3$ Relaxor Ferroelectrics," Ceram. Int., 42 [15] 17876-79 (2016). https://doi.org/10.1016/j.ceramint.2016.08.087
  83. W. Tang, Q. Xu, H. Liu, Z. Yao, H. Hao, and M. Cao, "High Energy Density Dielectrics in Lead-Free $Bi_{0.5}Na_{0.5}TiO_{3}-NaNbO_{3}-Ba(Zr_{0.2}Ti_{0.8})O_3$ Ternary System with Wide Operating Temperature," J. Mater. Sci. Mater. Electron., 27 [6] 6526-34 (2016). https://doi.org/10.1007/s10854-016-4596-0
  84. Q. Xu, H. Liu, L. Zhang, J. Xie, H. Hao, M. Cao, Z. Yao, and M. T. Lanagan, "Structure and Electrical Properties of Lead-Free $Bi_{0.5}Na_{0.5}TiO_3$-Based Ceramics for Energy-Storage Applications," RSC Adv., 6 [64] 59280-91 (2016). https://doi.org/10.1039/C6RA11744A
  85. Y. Yao, Y. Li, N. Sun, J. Du, X. Li, L. Zhang, Q. Zhang, and X. Hao, "Enhanced Dielectric and Energy-Storage Properties in ZnO-Doped $0.9(0.94Na_{0.5}Bi_{0.5}TiO_{3}-0.06Ba-TiO_3)-0.1NaNbO_3$ Ceramics," Ceram. Int., 44 [6] 5961-66 (2018). https://doi.org/10.1016/j.ceramint.2017.12.174
  86. H. Yang, F. Yan, Y. Lin, T. Wang, and F. Wang, "High Energy Storage Density over a Broad Temperature Range in Sodium Bismuth Titanate-Based Lead-Free Ceramics," Sci. Rep., 7 [1] 8726 (2017). https://doi.org/10.1038/s41598-017-06966-7
  87. B. Qu, H. Du, and Z. Yang, "Lead-Free Relaxor Ferroelectric Ceramics with High Optical Transparency and Energy Storage Ability," J. Mater. Chem. C, 4 [9] 1795-803 (2016). https://doi.org/10.1039/C5TC04005A
  88. Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, and Z. Xu, "Significantly Enhanced Recoverable Energy Storage Density in Potassium-Sodium Niobate- Based Lead Free Ceramics," J. Mater. Chem. A, 4 [36] 13778-85 (2016). https://doi.org/10.1039/C6TA04107H
  89. B. Qu, H. Du, Z. Yang, Q. Liu, and T. Liu, "Enhanced Dielectric Breakdown Strength and Energy Storage Density in Lead-Free Relaxor Ferroelectric Ceramics Prepared Using Transition Liquid Phase Sintering," RSC Adv., 6 [41] 34381-89 (2016). https://doi.org/10.1039/C6RA01919F
  90. Q. Chai, D. Yang, X. Zhao, X. Chao, and Z. Yang, "Lead- Free (K,Na)$NbO_3$-Based Ceramics with High Optical Transparency and Large Energy Storage Ability," J. Am. Ceram. Soc., 101 [6] 2321-29 (2017). https://doi.org/10.1111/jace.15392
  91. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, and Z. Xu, "Potassium-Sodium Niobate Based Lead-Free Ceramics: Novel Electrical Energy Storage Materials," J. Mater. Chem. A, 5 [2] 554-63 (2017). https://doi.org/10.1039/C6TA07803F
  92. H. Tao and J. Wu, "Optimization of Energy Storage Density in Relaxor (K, Na, Bi)$NbO_3$ Ceramics," J. Mater. Sci. Mater. Electron., 28 [21] 16199-204 (2017). https://doi.org/10.1007/s10854-017-7521-2
  93. D. Zheng, R. Zuo, D. Zhang, and Y. Li, "Novel $BiFeO_{3}-BaTiO_{3}-Ba(Mg_{1/3}Nb_{2/3})O_3$ Lead-Free Relaxor Ferroelectric Ceramics for Energy-Storage Capacitors," J. Am. Ceram. Soc., 98 [9] 2692-95 (2015). https://doi.org/10.1111/jace.13737
  94. D. Zheng and R. Zuo, "Enhanced Energy Storage Properties in $La(Mg_{1/2}Ti_{1/2})O_3$-Modified $BiFeO_3-BaTiO_3$ Lead-Free Relaxor Ferroelectric Ceramics within a Wide Temperature Range," J. Eur. Ceram. Soc., 37 [1] 413-18 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.08.021
  95. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, and I. Reaney, "Bismuth Ferrite- Based Lead-Free Ceramics and Multilayers with High Recoverable Energy Density," J. Mater. Chem. A, 6 [9] 4133-44 (2018). https://doi.org/10.1039/C7TA09857J
  96. F. Yan, H. Yang, Y. Lin, and T. Wang, "Dielectric and Ferroelectric Properties of $SrTiO_{3}-Bi_{0.5}Na_{0.5}TiO_{3}-BaAl_{0.5}Nb_{0.5}O_3$ Lead-Free Ceramics for High-Energy-Storage Applications," Inorg. Chem., 56 [21] 13510-16 (2017). https://doi.org/10.1021/acs.inorgchem.7b02181
  97. H. Yang, F. Yan, Y. Lin, and T. Wang, "Improvement of Dielectric and Energy Storage Properties in $SrTiO_3$-Based Lead-Free Ceramics," J. Alloys Compd., 728 780-87 (2017). https://doi.org/10.1016/j.jallcom.2017.09.022
  98. C. Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo, C. Hui, Y. Wang, and Y. Cui, "Structure, Dielectric and Relaxor Properties in Lead-Free ST-NBT Ceramics for High Energy Storage Applications," J. Alloys Compd., 711 319-26 (2017). https://doi.org/10.1016/j.jallcom.2017.04.023
  99. H. Yang, F. Yan, Y. Lin, T. Wang, L. He, and F. Wang, "A Lead Free Relaxation and High Energy Storage Efficiency Ceramics for Energy Storage Applications," J. Alloys Compd., 710 436-45 (2017). https://doi.org/10.1016/j.jallcom.2017.03.261
  100. C. Cui and Y. Pu, "Improvement of Energy Storage Density with Trace Amounts of $ZrO_2$ Additives Fabricated by Wet-Chemical Method," J. Alloys Compd., 747 495-504 (2018). https://doi.org/10.1016/j.jallcom.2018.03.058
  101. H. Yang, F. Yan, Y. Lin, and T. Wang, "Novel Strontium Titanate-Based Lead-Free Ceramics for High-Energy Storage Applications," ACS Sustainable Chem. Eng., 5 [11] 10215-22 (2017). https://doi.org/10.1021/acssuschemeng.7b02203
  102. C. Cui, Y. Pu, and R. Shi, "High-Energy Storage Performance in Lead-Free $(0.8-x)SrTiO_{3}-0.2Na_{0.5}Bi_{0.5}TiO_{3}-xBa-TiO_3$ Relaxor Ferroelectric Ceramics," J. Alloys Compd., 740 1180-87 (2018). https://doi.org/10.1016/j.jallcom.2018.01.106
  103. C. Cui and Y. Pu, "Effect of Sn Substitution on the Energy Storage Properties of $0.45SrTiO_{3}-0.2Na_{0.5}Bi_{0.5}TiO_{3}-0.35Ba-TiO_3$ Ceramics," J. Mater. Sci., 53 [13] 9830-41 (2018). https://doi.org/10.1007/s10853-018-2282-8
  104. X. Hao, J. Zhai, L. B. Kong, and Z. Xu, "A Comprehensive Review on the Progress of Lead Zirconate-Based Antiferroelectric Materials," Prog. Mater. Sci., 63 1-57 (2014). https://doi.org/10.1016/j.pmatsci.2014.01.002
  105. E. Sawaguchi, H. Maniwa, and S. Hoshino, "Antiferroelectric Structure of Lead Zirconate," Phys. Rev., 83 [5] 1078 (1951).
  106. P. Satyanarayan, C. Aditya, and V. Rahul, "Enhancing Electrical Energy Storage Density in Anti-Ferroelectric Ceramics Using Ferroelastic Domain Switching," Mater. Res. Exp. 1 [4] 045502 (2014). https://doi.org/10.1088/2053-1591/1/4/045502
  107. B. Li, Q. Liu, X. Tang, T. Zhang, Y. Jiang, W. Li, and J. Luo, "High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics," Materials, 10 [2] 143 (2017). https://doi.org/10.3390/ma10020143
  108. H. Zhang, X. Chen, F. Cao, G. Wang, X. Dong, Z. Hu, and T. Du, "Charge-Discharge Properties of an Antiferroelectric Ceramics Capacitor under Different Electric Fields," J. Am. Ceram. Soc., 93 [12] 4015-17 (2010). https://doi.org/10.1111/j.1551-2916.2010.04226.x
  109. J. Wang, T. Yang, S. Chen, and G. Li, "High Energy Storage Density Performance of Ba, Sr-Modified Lead Lanthanum Zirconate Titanate Stannate Antiferroelectric Ceramics," Mater. Res. Bull., 48 [10] 3847-49 (2013). https://doi.org/10.1016/j.materresbull.2013.05.083
  110. R. Xu, Z. Xu, Y. Feng, X. Wei, and J. Tian, "Nonlinear Dielectric and Discharge Properties of $Pb_{0.94}La_{0.04}[(Zr_{0.56}-Sn_{0.44})_{0.84}Ti_{0.16}]O_3$ Antiferroelectric Ceramics," J. Appl. Phys., 120 [14] 144102 (2016). https://doi.org/10.1063/1.4964736
  111. H. Yu, J. Zhang, M. Wei, J. Huang, H. Chen, and C. Yang, "Enhanced Energy Storage Density Performance in $(Pb_{0.97}La_{0.02})(Zr_{0.5}Sn_{0.44}Ti_{0.06})-BiYO_3$ Anti-Ferroelectric Composite Ceramics," J. Mater. Sci. Mater. Electron., 28 [1] 832-38 (2017). https://doi.org/10.1007/s10854-016-5597-8
  112. J. Wang, T. Yang, S. Chen, and X. Yao, "Small Hysteresis and High Energy Storage Power of Antiferroelectric Ceramics," Funct. Mater. Lett., 07 [01] 1350064 (2013). https://doi.org/10.1142/S1793604713500641
  113. Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, and G. Wang, "Temperature-Dependent Stability of Energy Storage Properties of $Pb_{0.97}La_{0.02}(Zr_{0.58}Sn_{0.335}Ti_{0.085})O_3$ Antiferroelectric Ceramics for Pulse Power Capacitors," Appl. Phys. Lett., 106 [26] 262901 (2015). https://doi.org/10.1063/1.4923373
  114. X. Wang, J. Shen, T. Yang, Y. Dong, and Y. Liu, "High Energy-Storage Performance and Dielectric Properties of Antiferroelectric $(Pb_{0.97}La_{0.02})(Zr_{0.5}Sn_{0.5-x}Ti_{x})O_3$ Ceramic," J. Alloys Compd., 655 309-13 (2016). https://doi.org/10.1016/j.jallcom.2015.09.167
  115. C. Xu, Z. Liu, X. Chen, S. Yan, F. Cao, X. Dong, and G. Wang, "High Charge-Discharge Performance of $Pb_{0.98}La_{0.02}-(Zr_{0.35}Sn_{0.55}Ti_{0.10})_{0.995}O_3$ Antiferroelectric Ceramics," J. Appl. Phys., 120 [7] 074107 (2016). https://doi.org/10.1063/1.4961329
  116. Q. Zhang, H. Tong, J. Chen, Y. Lu, T. Yang, X. Yao, and Y. He, "High Recoverable Energy Density over a Wide Temperature Range in Sr Modified (Pb,La)(Zr,Sn,Ti)$O_3$ Antiferroelectric Ceramics with an Orthorhombic Phase," Appl. Phys. Lett., 109 [26] 262901 (2016). https://doi.org/10.1063/1.4973425
  117. R. Xu, Z. Xu, Y. Feng, J. Tian, and D. Huang, "Energy Storage and Release Properties of Sr-Doped (Pb,La)(Zr,Sn,Ti)$O_3$ Antiferroelectric Ceramics," Ceram. Int., 42 [11] 12875-79 (2016). https://doi.org/10.1016/j.ceramint.2016.05.053
  118. Q. Zhang, Y. Dan, J. Chen, Y. Lu, T. Yang, X. Yao, and Y. He, "Effects of Composition and Temperature on Energy Storage Properties of (Pb,La)(Zr,Sn,Ti)$O_3$ Antiferroelectric Ceramics," Ceram. Int., 43 [14] 11428-32 (2017). https://doi.org/10.1016/j.ceramint.2017.06.005
  119. Z. Liu, X. Dong, Y. Liu, F. Cao, and G. Wang, "Electric Field Tunable Thermal Stability of Energy Storage Properties of PLZST Antiferroelectric Ceramics," J. Am. Ceram. Soc., 100 [6] 2382-86 (2017). https://doi.org/10.1111/jace.14867
  120. Z. Liu, Y. Bai, X. Chen, X. Dong, H. Nie, F. Cao, and G. Wang, "Linear Composition-Dependent Phase Transition Behavior and Energy Storage Performance of Tetragonal PLZST Antiferroelectric Ceramics," J. Alloys Compd., 691 721-25 (2017). https://doi.org/10.1016/j.jallcom.2016.08.328
  121. S. E. Young, J. Y. Zhang, W. Hong, and X. Tan, "Mechanical Self-Confinement to Enhance Energy Storage Density of Antiferroelectric Capacitors," J. Appl. Phys., 113 [5] 054101 (2013). https://doi.org/10.1063/1.4790135
  122. S. Patel, A. Chauhan, and R. Vaish, "Enhanced Electrical Energy Storage Density in Mechanical Confined Antiferroelectric Ceramic," Ferroelectrics, 486 [1] 114-25 (2015). https://doi.org/10.1080/00150193.2015.1100469
  123. X. Chen, H. Zhang, F. Cao, G. Wang, X. Dong, Y. Gu, H. He, and Y. Liu, "Charge-Discharge Properties of Lead Zirconate Stannate Titanate Ceramics," J. Appl. Phys., 106 [3] 034105 (2009). https://doi.org/10.1063/1.3187778
  124. Q. Zhang, X. Liu, Y. Zhang, X. Song, J. Zhu, I. Baturin, and J. Chen, "Effect of Barium Content on Dielectric and Energy Storage Properties of (Pb,La,Ba)(Zr,Sn,Ti)$O_3$ Ceramics," Ceram. Int., 41 [2] 3030-35 (2015). https://doi.org/10.1016/j.ceramint.2014.10.139
  125. L. Chen, X. Hao, Q. Zhang, and S. An, "Energy-Storage Performance of $PbO-B_2O_3-SiO_2$ Added $(Pb_{0.92}Ba_{0.05}La_{0.02})-(Zr_{0.68}Sn_{0.27}Ti_{0.05})O_3$$ Antiferroelectric Ceramics Prepared by Microwave Sintering Method," J. Mater. Sci. Mater. Electron., 27 [5] 4534-40 (2016). https://doi.org/10.1007/s10854-016-4328-5
  126. R. Xu, Z. Xu, Y. Feng, H. He, J. Tian, and D. Huang, "Temperature Dependence of Energy Storage in $Pb_{0.90}La_{0.04}Ba_{0.04}-[(Zr_{0.7}Sn_{0.3})_{0.88}Ti_{0.12}]O_3$ Antiferroelectric Ceramics," J. Am. Ceram. Soc., 99 [9] 2984-88 (2016). https://doi.org/10.1111/jace.14297
  127. G. Zhang, D. Zhu, X. Zhang, L. Zhang, J. Yi, B. Xie, Y. Zeng, Q. Li, Q. Wang, and S. Jiang, "High-Energy Storage Performance of $(Pb_{0.87}Ba_{0.1}La_{0.02})(Zr_{0.68}Sn_{0.24}Ti_{0.08})O_3$ Antiferroelectric Ceramics Fabricated by the Hot-Press Sintering Method," J. Am. Ceram. Soc., 98 [4] 1175-81 (2015). https://doi.org/10.1111/jace.13412
  128. X. Wang, J. Shen, T. Yang, Z. Xiao, and Y. Dong, "Phase Transition and Energy Storage Performance in Ba-Doped PLZST Antiferroelectric Ceramics," J. Mater. Sci. Mater. Electron., 26 [11] 9200-4 (2015). https://doi.org/10.1007/s10854-015-3612-0
  129. G. Zhang, P. Liu, B. Fan, H. Liu, Y. Zeng, S. Qiu, S. Jiang, Q. Li, Q. Wang, and J. Liu, "Large Energy Density in Ba Doped $Pb_{0.97}La_{0.02}(Zr_{0.65}Sn_{0.3}Ti_{0.05})O_3$ Antiferroelectric Ceramics with Improved Temperature Stability," IEEE Trans. Dielectr. Electr. Insul., 24 [2] 744-48 (2017). https://doi.org/10.1109/TDEI.2017.006161
  130. B. Guo, P. Liu, Y. Song, and D. Liu, "Effect of Ti Content on Energy Storage Properties of $(Pb_{0.87}Ba_{0.10}La_{0.02})-(Zr_{0.60}Sn_{0.40-x}Ti_{x})O_3$ Bulk Ceramics," Ferroelectrics, 510 [1] 152-60 (2017). https://doi.org/10.1080/00150193.2017.1328256
  131. L. Zhang, S. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, and G. Zhang, "Y Doping and Grain Size Co- Effects on the Electrical Energy Storage Performance of $(Pb_{0.87}Ba_{0.1}La_{0.02})(Zr_{0.65}Sn_{0.3}Ti_{0.05})O_3$ Anti-Ferroelectric Ceramics," Ceram. Int., 40 [4] 5455-60 (2014). https://doi.org/10.1016/j.ceramint.2013.10.131
  132. L. Zhang, S. Jiang, B. Fan, and G. Zhang, "High Energy Storage Performance in $(Pb_{0.858}Ba_{0.1}La_{0.02}Y_{0.008})-(Zr_{0.65}Sn_{0.3}Ti_{0.05})O_3-(Pb_{0.97}La_{0.02})(Zr_{0.9}Sn_{0.05}Ti_{0.05})O_3$ Anti-Ferroelectric Composite Ceramics," Ceram. Int., 41 [1] 1139-44 (2015). https://doi.org/10.1016/j.ceramint.2014.09.041
  133. L. Zhang, S. Jiang, B. Fan, and G. Zhang, "Enhanced Energy Storage Performance in $(Pb_{0.858}Ba_{0.1}La_{0.02}Y_{0.008})-(Zr_{0.65}Sn_{0.3}Ti_{0.05})O_3-(Pb_{0.97}La_{0.02})(Zr_{0.9}Sn_{0.05}Ti_{0.05})O_3$ Anti-Ferroelectric Composite Ceramics by Spark Plasma Sintering," J. Alloys Compd., 622 162-65 (2015). https://doi.org/10.1016/j.jallcom.2014.09.171
  134. J. Yi, L. Zhang, B. Xie, and S. Jiang, "The Influence of Temperature Induced Phase Transition on the Energy Storage Density of Anti-Ferroelectric Ceramics," J. Appl. Phys., 118 [12] 124107 (2015). https://doi.org/10.1063/1.4931886
  135. Q. Zhang, J. Chen, Y. Lu, T. Yang, X. Yao, and Y. He, "(Pb,Sm)(Zr,Sn,Ti)$O_3$ Multifunctional Ceramics with Large Electric-Field-Induced Strain and High-Energy Storage Density," J. Am. Ceram. Soc., 99 [12] 3853-56 (2016). https://doi.org/10.1111/jace.14592
  136. L. Xu, C. He, X. Yang, Z. Wang, X. Li, H. N. Tailor, and X. Long, "Composition Dependent Structure, Dielectric and Energy Storage Properties of Pb$(Tm_{1/2}Nb_{1/2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3$ Antiferroelectric Ceramics," J. Eur. Ceram. Soc., 37 [10] 3329-34 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.005
  137. D. Berlincourt, "Transducers Using Forced Transitions between Ferroelectric and Antiferroelectric States," IEEE Trans. Sonics Ultrason., 13 [4] 116-24 (1966). https://doi.org/10.1109/T-SU.1966.29394
  138. W. Cao, W. Li, Y. Feng, T. Bai, Y. Qiao, Y. Hou, T. Zhang, Y. Yu, and W. Fei, "Defect Dipole Induced Large Recoverable Strain and High Energy-Storage Density in Lead- Free $Na_{0.5}Bi_{0.5}TiO_3$-Based Systems," Appl. Phys. Lett., 108 [20] 202902 (2016). https://doi.org/10.1063/1.4950974
  139. Y. Wang, Z. Lv, H. Xie, and J. Cao, "High Energy-Storage Properties of $[(Bi_{1/2}Na_{1/2})_{0.94}Ba_{0.06}]La_{(1-x)}Zr_{x}TiO_3$ Lead-Free Anti-Ferroelectric Ceramics," Ceram. Int., 40 [3] 4323-26 (2014). https://doi.org/10.1016/j.ceramint.2013.08.099
  140. J. Zhao, M. Cao, Z. Wang, Q. Xu, L. Zhang, Z. Yao, H. Hao, and H. Liu, "Enhancement of Energy-Storage Properties of $K_{0.5}Na_{0.5}NbO_3\;Modified\;Na_{0.5}Bi_{0.5}TiO_3-K_{0.5}Bi_{0.5}TiO_3$ Lead-Free Ceramics," J. Mater. Sci. Mater. Electron., 27 [1] 466-73 (2016). https://doi.org/10.1007/s10854-015-3775-8
  141. J. Cao, Y. Wang, and Z. Li, "Energy-Storage Properties and Electrical Behavior of Lead-Free Anti-Ferroelectric $(Bi_{0.46}Na_{0.46}Ba_{0.05}La_{0.02})Zr_{x}Ti_{(1-x)}O_3$ Ceramics," Ferroelectrics, 505 [1] 17-23 (2016). https://doi.org/10.1080/00150193.2016.1253388
  142. Y. Zhao, J. Xu, L. Yang, C. Zhou, X. Lu, C. Yuan, Q. Li, G. Chen, and H. Wang, "High Energy Storage Property and Breakdown Strength of $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ Ceramics Modified by $(Al_{0.5}Nb_{0.5})^{4+}$ Complex-Ion," J. Alloys Compd., 666 209-16 (2016). https://doi.org/10.1016/j.jallcom.2016.01.103
  143. Q. Li, C. Zhou, J. Xu, L. Yang, X. Zhang, W. Zeng, C. Yuan, G. Chen, and G. Rao, "Tailoring Antiferroelectricity with High Energy-Storage Properties in $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3$ Ceramics by Modulating Bi/Na Ratio," J. Mater. Sci. Mater. Electron., 27 [10] 10810-15 (2016). https://doi.org/10.1007/s10854-016-5187-9
  144. J. Xu, X. Lu, L. Yang, C. Zhou, Y. Zhao, H. Zhang, X. Zhang, W. Qiu, and H. Wang, "Enhanced Electrical Energy Storage Properties in La-Doped $(Bi_{0.5}Na_{0.5})_{0.93}Ba_{0.07}TiO_3$ Lead-Free Ceramics by Addition of $La_2O_3\;and\;La(NO_3)_3$," J. Mater. Sci., 52 [17] 10062-72 (2017). https://doi.org/10.1007/s10853-017-1209-0
  145. A. Mishra, B. Majumdar, and R. Ranjan, "A Complex Lead-Free (Na,Bi,Ba)(Ti,Fe)$O_3$ Single Phase Perovskite Ceramic with a High Energy-Density and High Discharge-Efficiency for Solid State Capacitor Applications," J. Eur. Ceram. Soc., 37 [6] 2379-84 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.036
  146. Z. Yu, Y. Liu, M. Shen, H. Qian, F. Li, and Y. Lyu, "Enhanced Energy Storage Properties of $BiAlO_3$ Modified $Bi_{0.5}Na_{0.5}TiO_3-Bi_{0.5}K_{0.5}TiO_3$ Lead-Free Antiferroelectric Ceramics," Ceram. Int., 43 [10] 7653-59 (2017). https://doi.org/10.1016/j.ceramint.2017.03.062
  147. F. Li, Y. Liu, Y. Lyu, Y. Qi, Z. Yu, and C. Lu, "Huge Strain and Energy Storage Density of A-site $La^{3+}$ Donor Doped $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ Ceramics," Ceram. Int., 43 [1] 106-10 (2017). https://doi.org/10.1016/j.ceramint.2016.09.117
  148. J. Yin, X. Lv, and J. Wu, "Enhanced Energy Storage Properties of {$Bi_{0.5}[(Na_{0.8}K_{0.2})_{1-z}\;Liz]_{0.5}$}$_{0.96}Sr_{0.04}(Ti_{1-x-y}\;Ta_{x}Nb_{y})O_3$ Lead-Free Ceramics," Ceram. Int., 43 [16] 13541-46 (2017). https://doi.org/10.1016/j.ceramint.2017.07.060
  149. K. R. Kandula, K. Banerjee, S. S. K. Raavi, and S. Asthana, "Enhanced Electrocaloric Effect and Energy Storage Density of Nd-Substituted 0.92NBT-0.08BT Lead Free Ceramic," Phys. Status Solidi A, 215 [7] 1700915 (2018). https://doi.org/10.1002/pssa.201700915
  150. Q. Li, Z. Yao, L. Ning, S. Gao, B. Hu, G. Dong, and H. Fan, "Enhanced Energy-Storage Properties of $(1-x)(0.7Bi_{0.5}Na_{0.5}TiO_3-0.3Bi_{0.2}Sr_{0.7}TiO_3)-xNaNbO_3$ Lead-Free Ceramics," Ceram. Int., 44 [3] 2782-88 (2018). https://doi.org/10.1016/j.ceramint.2017.11.018
  151. P. Chen and B. Chu, "Improvement of Dielectric and Energy Storage Properties in $Bi(Mg_{1/2}Ti_{1/2})O_3$-Modified $(Na_{1/2}Bi_{1/2})_{0.92}Ba_{0.08}TiO_3$ Ceramics," J. Eur. Ceram. Soc., 36 [1] 81-8 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.029
  152. L. Zhao, Q. Liu, S. Zhang, and J.-F. Li, "Lead-Free $AgNbO_3$ Anti-Ferroelectric Ceramics with an Enhanced Energy Storage Performance Using $MnO_2$ Modification," J. Mater. Chem. C, 4 [36] 8380-84 (2016). https://doi.org/10.1039/C6TC03289C
  153. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E. D. Politova, S. Y. Stefanovich, N. V. Tarakina, I. Abrahams, and H. Yan, "High Energy Density in Silver Niobate Ceramics," J. Mater. Chem. A, 4 [44] 17279-87 (2016). https://doi.org/10.1039/C6TA06353E
  154. L. Zhao, Q. Liu, J. Gao, S. Zhang, and J.-F. Li, "Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance," Adv. Mater., 29 [31] 1701824 (2017). https://doi.org/10.1002/adma.201701824
  155. L. Zhao, J. Gao, Q. Liu, S. Zhang, and J.-F. Li, "Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-site Doping," ACS Appl. Mater. Interfaces, 10 [1] 819-26 (2018). https://doi.org/10.1021/acsami.7b17382
  156. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, and H. Yan, "Phase Transitions in Bismuth-Modified Silver Niobate Ceramics for High Power Energy Storage," J. Mater. Chem. A, 5 [33] 17525-31 (2017). https://doi.org/10.1039/C7TA03821F
  157. B. W. Eerd, D. Damjanovic, N. Klein, N. Setter, and J. Trodahl, "Structural Complexity of $(Na_{0.5}Bi_{0.5})TiO_3-BaTiO_3$ as Revealed by Raman Spectroscopy," Phys. Rev. B, 82 [10] 104112 (2010). https://doi.org/10.1103/PhysRevB.82.104112
  158. B. Xu, J. Iniguez, and L. Bellaiche, "Designing Lead-Free Antiferroelectrics for Energy Storage," Nat. Commun., 8 15682 (2017). https://doi.org/10.1038/ncomms15682

Cited by

  1. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics vol.15, pp.3, 2019, https://doi.org/10.1007/s13391-019-00124-z
  2. Excellent energy storage density and charge-discharge performance of a novel Bi0.2Sr0.7TiO3-BiFeO3 thin film vol.7, pp.35, 2019, https://doi.org/10.1039/c9tc03032h
  3. Dielectric and Energy Storage Properties of Ba(1−x)CaxZryTi(1−y)O3 (BCZT): A Review vol.12, pp.21, 2019, https://doi.org/10.3390/ma12213641
  4. An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO3 vol.48, pp.48, 2019, https://doi.org/10.1039/c9dt03654g
  5. Energy Storage Properties of Blended Polymer Films with Normal Ferroelectric P(VDF-HFP) and Relaxor Ferroelectric P(VDF-TrFE-CFE) vol.16, pp.1, 2019, https://doi.org/10.1007/s13391-019-00188-x
  6. Lead‐Free Bi 0.5 (Na 0.78 K 0.22 )TiO 3 Nanoparticle Filler-Elastomeric Composite Films for Paper‐Based Flexible Power Generators vol.6, pp.2, 2019, https://doi.org/10.1002/aelm.201900950
  7. Developing a novel high performance NaNbO3-based lead-free dielectric capacitor for energy storage applications vol.4, pp.3, 2020, https://doi.org/10.1039/c9se00836e
  8. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices vol.2, pp.8, 2019, https://doi.org/10.1039/c9na00809h
  9. Configurational approach to the enhancement of the dielectric properties and energy density of polyvinylidene fluoride-based polymer composites vol.53, pp.37, 2019, https://doi.org/10.1088/1361-6463/ab88e4
  10. Novel BaTiO3-Based, Ag/Pd-Compatible Lead-Free Relaxors with Superior Energy Storage Performance vol.12, pp.39, 2020, https://doi.org/10.1021/acsami.0c13057
  11. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives vol.121, pp.10, 2021, https://doi.org/10.1021/acs.chemrev.0c01264
  12. Enhanced Energy Storage Performance of Polymer/Ceramic/Metal Composites by Increase of Thermal Conductivity and Coulomb-Blockade Effect vol.13, pp.23, 2019, https://doi.org/10.1021/acsami.1c01177
  13. Ultrahigh energy storage density in epitaxial AlN/ScN superlattices vol.5, pp.7, 2021, https://doi.org/10.1103/physrevmaterials.5.l072401
  14. Excellent energy storage properties and superior stability achieved in lead-free ceramics via a spatial sandwich structure design strategy vol.9, pp.28, 2021, https://doi.org/10.1039/d1ta02853g
  15. High energy storage density with ultra-high efficiency and fast charging-discharging capability of sodium bismuth niobate lead-free ceramics vol.11, pp.4, 2021, https://doi.org/10.1142/s2010135x21500181
  16. High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges vol.9, pp.34, 2021, https://doi.org/10.1039/d1ta04504k
  17. Tuning the Energy Storage Efficiency in PVDF Nanocomposites Incorporated with Crumpled Core-Shell BaTiO3@Graphene Oxide Nanoparticles vol.4, pp.9, 2019, https://doi.org/10.1021/acsaem.1c01717
  18. 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00142-4
  19. Enhanced magnetoelectric coupling in stretch-induced shear mode magnetoelectric composites vol.58, pp.6, 2021, https://doi.org/10.1007/s43207-021-00144-2
  20. Induced slim ferroelectric hysteresis loops and enhanced energy-storage properties of Mn-doped (Pb0·93La0.07)(Zr0·82Ti0.18)O3 anti-ferroelectric thick films by aerosol deposition vol.47, pp.22, 2019, https://doi.org/10.1016/j.ceramint.2021.08.039
  21. BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects vol.14, pp.23, 2019, https://doi.org/10.3390/ma14237188
  22. Highly enhanced discharged energy density and superior cyclic stability of Bi0.5Na0.5TiO3-based ceramics by introducing Sr0.7Ca0.3TiO3 component vol.276, 2019, https://doi.org/10.1016/j.matchemphys.2021.125402
  23. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: A review vol.45, 2019, https://doi.org/10.1016/j.ensm.2021.11.043