DOI QR코드

DOI QR Code

Effect of Strain Rate on Microstructure Formation Behavior of M1 Magnesium Alloy During High-temperature Deformation

변형속도에 따른 M1 마그네슘 합금의 고온변형 중 미세조직 형성 거동

  • Lee, Kyujung (Marine Convergence Design Co-work, Pukyong National University) ;
  • Kim, Kwonhoo (Department of Metallurgical Engineering, Pukyong National University)
  • 이규정 (부경대학교 마린융합디자인협동과정) ;
  • 김권후 (부경대학교 금속공학과)
  • Received : 2019.01.02
  • Accepted : 2019.01.22
  • Published : 2019.01.31

Abstract

In this study, microstructure evolution and crystallographic orientation are investigated under various deformation conditions in M1 magnesium alloy. M1 magnesium ingot was rolled at 673 K with the rolling reduction of 30%. The compression test specimens were machined out from rolled plate, and then the specimens were annealed at 823 K for 1h. Uniaxial compression tests were conducted at 723 K and under the strain rate ranging from $5.0{\times}10^{-4}s^{-1}$ to $5.0{\times}10^{-2}s^{-1}$ up to a true strain of -1.0. For observation of crystal orientation distribution, EBSD measurement was performed. Occurrence of the dynamic recrystallization and grain boundary migration were confirmed in all case of the specimens. The distribution of the grains is not uniformed in the experimental conditions.

Keywords

OCRHB6_2019_v32n1_1_f0001.png 이미지

Fig. 1. True stress-strain curves on M1 magnesium alloy with two different strain rate.

OCRHB6_2019_v32n1_1_f0002.png 이미지

Fig. 2. Microstructure observation of M1 magnesium alloy before deformation.

OCRHB6_2019_v32n1_1_f0003.png 이미지

Fig. 3. Grain structure map observed on the mid-plane (ND plane) section by EBSD measurement after deformation on the strain rate of 5.0 × 10-2 s-1 at various true strain of (a) -0.4, (b) -0.7, (c) -1.0 and (d) -1.3, respectively.

OCRHB6_2019_v32n1_1_f0004.png 이미지

Fig. 4. Grain structure map observed on the mid-plane(ND plane) section by EBSD measurement after deformation on the strain rate of 5.0 × 10-4 s-1 at various true strain of (a) -0.4, (b) -0.7, (c) -1.0 and (d) -1.3, respectively.

OCRHB6_2019_v32n1_1_f0005.png 이미지

Fig. 5. Effect of true strain on mean grain size at different strain rates. Open circle means annealed state.

OCRHB6_2019_v32n1_1_f0006.png 이미지

Fig. 6. Black map obtained by EBSD measurement after deformation on the true strain of -1.0 at strain rates of (a) 5.0 × 10-2 s-1 and (b) 5.0 × 10-4 s-1, respectively.

OCRHB6_2019_v32n1_1_f0007.png 이미지

Fig. 7. Histograms showing the distribution of grain size before deformation.

OCRHB6_2019_v32n1_1_f0008.png 이미지

Fig. 8. Histograms showing the distribution of grain size at each strain with the strain rate of 5.0 × 10-2 s-1.

OCRHB6_2019_v32n1_1_f0009.png 이미지

Fig. 9 Histograms showing the distribution of grain size at each strain with the strain rate of 5.0 × 10-4 s-1.

OCRHB6_2019_v32n1_1_f0010.png 이미지

Fig. 10. Grain orientation spread (GOS) distribution according to each grain size.

OCRHB6_2019_v32n1_1_f0011.png 이미지

Fig. 11. Line misorientation on each line at the true strain of -1.0 and strain rate of 5.0 × 10-2 s-1.

OCRHB6_2019_v32n1_1_f0012.png 이미지

Fig. 12. Kernel Average Misorientation (KAM) based on EBSD data in each difference of strain rate at the true strain of -1.3.

Table 1. Chemical composition of the M1 magnesium alloys (wt.%)

OCRHB6_2019_v32n1_1_t0001.png 이미지

References

  1. T. K. Kim : Industrial material dyetec vision, 62 (2014), 48-52.
  2. M. Celikin, A. A. Kaya, and M. Pekguleryuz : Materials Science and Engineering A, 550 (2012) 39-50. https://doi.org/10.1016/j.msea.2012.03.117
  3. M. Celikin, A. A. Kaya, and M. Pekguleryuz : Materials Science and Engineering A, 534 (2012) 129-141. https://doi.org/10.1016/j.msea.2011.11.050
  4. K. Suzuki, Y. Chino, X. Huang, M. Yuasa, and M. Mabuchi : Materials Transactions, 54 (2013), 392-398. https://doi.org/10.2320/matertrans.M2012312
  5. Q. Jin, S. Y. Shim, and S. G. Lim : Scripta Materialia 55 (2006) 843-846. https://doi.org/10.1016/j.scriptamat.2006.05.040
  6. J. Kim, K. Okayasu, and H. Fukutomi : Materials Science Forum, 753 (2013) 493-496. https://doi.org/10.4028/www.scientific.net/MSF.753.493
  7. L. Helis, K. Okayasu, and H. Fukutomi : Mater. Sci. Eng. A, 430 (2006) 98-103. https://doi.org/10.1016/j.msea.2006.04.125
  8. J. Kim, K. Okayasu, and H. Fukutomi : Mater. Trans, 54 (2013) 192-198. https://doi.org/10.2320/matertrans.H-M2012832
  9. M. S. Park, H. G. Park, J. H. Choi, and K. H. Kim : Materials Science Forum, 879 (2017) 1449-1453. https://doi.org/10.4028/www.scientific.net/msf.879.1449
  10. J. Bohlen, S. Yi, D. Letzig, and K. U. Kainer : Materials Science and Engineering A, 527 (2010) 7092-7098. https://doi.org/10.1016/j.msea.2010.07.081
  11. K. Huang and R. E. Loge : Materials & Design, 111 (2016) 548-574. https://doi.org/10.1016/j.matdes.2016.09.012
  12. J. Su, M. Sanjari, A. S. H. Kabir, I. H. Jung, and S. Yue : Scripta Materialia, 113 (2016) 198-201. https://doi.org/10.1016/j.scriptamat.2015.10.040
  13. Y. Onuki, K. Okayasu, and H. Fukutomi : Tetsu-to-Hagane, 98 (2012) 177-183. https://doi.org/10.2355/tetsutohagane.98.177
  14. J. H. Kwak : Marine Convergence Design Co-work, The Graduate School Pukyong National University.
  15. J. H. Ahn : Marine Convergence Design Co-work, The Graduate School Pukyong National University.
  16. H. Okamoto : Journal of Phase Equilibria and Diffusion, 29(2) (2008).
  17. M. Celikin, A. A. Kaya, and M. Pekguleryuz : Materials Science & Engineering A, 550 (2012) 39-50. https://doi.org/10.1016/j.msea.2012.03.117