DOI QR코드

DOI QR Code

Numerical investigation on combined wave damping effect of pneumatic breakwater and submerged breakwater

  • Wang, Yanxu (Engineering College, Ocean University of China) ;
  • Yin, Zegao (Engineering College, Ocean University of China) ;
  • Liu, Yong (Engineering College, Ocean University of China) ;
  • Yu, Ning (Engineering College, Ocean University of China) ;
  • Zou, Wei (Engineering College, Ocean University of China)
  • Received : 2018.01.24
  • Accepted : 2018.06.21
  • Published : 2019.01.31

Abstract

This paper attempts to combine the pneumatic breakwater and submerged breakwater to increase the effectiveness of wave damping for long-period waves. A series of physical experiments concerning pneumatic breakwater, submerged breakwater and their joint breakwater was conducted and used to validate a mathematical model based on Reynolds-averaged Navier-Stokes equations, the RNG $k-{\varepsilon}$ turbulence model and the VOF method. In addition, the mathematical model was used to investigate the wave transmission coefficients of three breakwaters. The nonlinear wave propagation behaviors and the energy transfer from lower frequencies to higher frequencies after the submerged breakwater were investigated in detail. Furthermore, an optimal arrangement between pneumatic breakwater and submerged breakwater was obtained for damping longer-period waves that cannot be damped effectively by the pneumatic breakwater alone. In addition, the reason for the appearance of the combination effect is that part of the energy of the transmitted waves over the submerged breakwater transfers to shorter-period waves. Finally, the impact of the joint breakwater on the wave field during wave propagation process was investigated.

Keywords

References

  1. Airy, G.B., 1842. Tides and waves. Encycl. Metrop. 192, 241-396.
  2. Barth, T.J., Jespersen, D., 1989. The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366. In: AIAA 27th Aerospace Sciences Meeting (Reno, Nevada), pp. 1-12.
  3. Beji, S., Battjes, J.A., 1993. Experimental investigation of wave propagation over a bar. Coast. Eng. 19 (1-2), 151-162. Coast. Eng. 55, 47-62. https://doi.org/10.1016/0378-3839(93)90022-Z
  4. Brasher, R., 1907. Protecting Objects from Wave Action. U.S. Patent No. 843,926. U.S. Patent and Trademark Office, Washington, DC.
  5. Bulson, P.S., 1961. Currents produced by an air curtain in deep water. Dock Harbour Auth. 42 (487), 15-22.
  6. Carevic, D., Loncar, G., Prsic, M., 2013. Wave parameters after smooth submerged breakwater. Coast. Eng. 79, 32-41. https://doi.org/10.1016/j.coastaleng.2013.04.004
  7. Chang, H.K., Liou, J.C., 2007. Long wave reflection from submerged trapezoidal breakwaters. Ocean Eng. 34 (1), 185-191. https://doi.org/10.1016/j.oceaneng.2005.11.017
  8. Chen, L.F., Zang, J., Hillis, A.J., Morgan, G.C.J., Plummer, A.R., 2014. Numerical investigation of wave-structure interaction using OpenFOAM. Ocean Eng. 88, 91-109. https://doi.org/10.1016/j.oceaneng.2014.06.003
  9. Craig, K.J., Nieuwoudt, M.N., Niemand, L.J., 2013. CFD simulation of anaerobic digester with variable sewage sludge rheology. Water Res. 47 (13), 4485-4497. https://doi.org/10.1016/j.watres.2013.05.011
  10. Evans, J.T., 1955. Pneumatic and similar breakwaters. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. R. Soc. 231 (1187), 457-466. https://doi.org/10.1098/rspa.1955.0187
  11. Garcia, N., Lara, J.L., Losada, I.J., 2004. 2-D numerical analysis of near-field flow at low crested permeable breakwaters. Coast. Eng. 51 (10), 991-1020. https://doi.org/10.1016/j.coastaleng.2004.07.017
  12. Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  13. Issa, R.I., 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62 (1), 40-65. https://doi.org/10.1016/0021-9991(86)90099-9
  14. Jung, T.H., Cho, Y.S., 2009. Analytical approach for long wave solution to an arbitrarily varying topography. J. Coast Res. 25 (1), 216-223. https://doi.org/10.2112/07-0930.1
  15. Jung, T.H., Suh, K.D., Lee, S.O., Cho, Y.-S., 2008. Linear wave reflection by trench with various shapes. Ocean Eng. 35 (11-12), 1226-1234. https://doi.org/10.1016/j.oceaneng.2008.04.001
  16. Karmakar, D., Guedes Soares, C., 2014. Wave transformation due to multiple bottomstanding porous barriers. Ocean Eng. 80, 50-63. https://doi.org/10.1016/j.oceaneng.2014.01.012
  17. Liu, Y., Li, Y.C., 2011. Wave interaction with a wave absorbing double curtain-wall breakwater. Ocean Eng. 38 (10), 1237-1245. https://doi.org/10.1016/j.oceaneng.2011.05.009
  18. Losada, I.J., Lara, J.L., Christensen, E.D., Garcia, N., 2005. Modelling of velocity and turbulence fields around and within low-crested rubble-mound breakwaters. Coast. Eng. 52 (10), 887-913. https://doi.org/10.1016/j.coastaleng.2005.09.008
  19. Losada, I.J., Lara, J.L., Guanche, R., Gonzalez-Ondina, J.M., 2008. Numerical analysis of wave overtopping of rubble mound breakwaters. Coast. Eng. 55 (1), 47-62. https://doi.org/10.1016/j.coastaleng.2007.06.003
  20. Masselink, G., 1998. Field investigation of wave propagation over a bar and the consequent generation of secondary waves. Coast. Eng. 33 (1), 1-9. https://doi.org/10.1016/S0378-3839(97)00032-X
  21. Neelamani, S., Rajendran, R., 2002. Wave interaction with 'ㅗ'-type breakwaters. Ocean Eng. 29 (5), 561-589. https://doi.org/10.1016/S0029-8018(01)00030-0
  22. Ning, D., Chen, L., Zhao, M., Teng, B., 2016. Experimental and numerical investigation of the hydrodynamic characteristics of submerged breakwaters in waves. J. Coast Res. 32 (4), 80.
  23. Paprota, M., 2013. Laboratory investigations of wave transmission through a submerged aerial barrier. In: Proceedings of the 6th International Short Course/Conference on Applied Coastal Research (Lisbon, Portugal).
  24. Paprota, M., Sulisz, W., 2017. Modelling of wave transmission through a pneumatic breakwater. J. Hydrodyn. 29 (2), 283-292. https://doi.org/10.1016/S1001-6058(16)60738-2
  25. Rambabu, A.C., Mani, J.S., 2005. Numerical prediction of performance of submerged breakwaters. Ocean Eng. 32 (10), 1235-1246. https://doi.org/10.1016/j.oceaneng.2004.10.023
  26. Romate, J.E., 1992. Absorbing boundary conditions for free surface waves. J. Comput. Phys. 99 (1), 135-145. https://doi.org/10.1016/0021-9991(92)90281-3
  27. Seabrook, S.R., Hall, K.R., 1999. Wave transmission at submerged rubblemound breakwaters. In: Proceedings of Coastal Engineering 1998, pp. 2000-2013.
  28. Sheremet, A., Kaihatu, J.M., Su, S.F., Smith, E.R., Smith, J.M., 2011. Modeling of nonlinear wave propagation over fringing reefs. Coast. Eng. 58 (12), 1125-1137. https://doi.org/10.1016/j.coastaleng.2011.06.007
  29. Tanimoto, K., Takahashi, S., Kimura, K., 1987. Structures and hydraulic characteristics of breakwaters-the state of the art of breakwater design in Japan. Rep. Port Harbour Res. Inst. 26 (5), 11-55.
  30. Taylor, G., 1955. The action of a surface current used as a breakwater. Proc. Roy. Soc. A 231, 466-478. https://doi.org/10.1098/rspa.1955.0188
  31. Tian, M., Sheremet, A., Kaihatu, J.M., Ma, G., 2015. On the Shoaling of solitary waves in the presence of short random waves. J. Phys. Oceanogr. 45 (3), 792-806. https://doi.org/10.1175/JPO-D-14-0142.1
  32. Torres-Freyermuth, A., Losada, I.J., Lara, J.L., 2007. Modeling of surf zone processes on a natural beach using Reynolds-Averaged NaviereStokes equations. J. Geophys. Res. 112 (C9), C09014.
  33. Twu, S.W., Liu, C.C., Hsu, W.H., 2001. Wave damping characteristics of deeply submerged breakwaters. J. Watarw. Port Coast. Ocean Eng. 127 (2), 97-105. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:2(97)
  34. Wang, Y.,Wang, G., Li, G., Cheng, Y., 2004. Investigation on model law of air bubbles breakwater. In: Hydrodynamics VI: Theory and Applications: Proceedings of the 6th International Conference on Hydrodynamics (Perth, Western Australia), pp. 319-324.
  35. Wu, Y.T., Hsiao, S.C., Chen, G.S., 2012. Solitary wave interaction with a submerged permeable breakwater: experiment and numerical modeling. Coast. Eng. Proc. 33 (2012), 1-14. https://doi.org/10.1016/j.proeng.2012.01.1169
  36. Xie, J.J., Liu, H.W., Lin, P., 2011. Analytical solution for long wave reflection by a rectangular obstacle with two scour trenches. J. Eng. Mech. 137 (12), 919-930. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000293
  37. Zhang, C.X.,Wang, Y.X., Wang, G.Y., Yu, L.M., 2010. Wave dissipating performance of air bubble breakwaters with different layouts. J. Hydrodyn. 22 (5), 671-680. https://doi.org/10.1016/S1001-6058(09)60102-5
  38. Zhang, N., Zhang, Q., Zou, G., Jiang, X., 2016. Estimation of the transmission coefficients of wave height and period after smooth submerged breakwater using a non-hydrostatic wave model. Ocean Eng. 122, 202-214. https://doi.org/10.1016/j.oceaneng.2016.06.037

Cited by

  1. Hydrodynamic Characteristics of a Pneumatic Breakwater with Combined Wave-Current Actions: A Numerical Investigation vol.36, pp.1, 2019, https://doi.org/10.2112/jcoastres-d-18-00140.1
  2. Numerical study on the performance of semicircular and rectangular submerged breakwaters vol.10, pp.2, 2019, https://doi.org/10.12989/ose.2020.10.2.201
  3. Investigation of the U-shape submerged breakwater performance by the finite-different scheme vol.11, pp.1, 2019, https://doi.org/10.12989/ose.2021.11.1.083