DOI QR코드

DOI QR Code

Numerical Study of Contaminant Pathway based on Generic-scenarios and Contaminant-based Scenarios of Vadose Zone

범용 시나리오 및 오염물질 시나리오에 기반한 불포화대 오염물질 경로에 대한 수치모의 연구

  • Chang, Sun Woo (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Min-Gyu (Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Il-Moon (Korea Institute of Civil Engineering and Building Technology)
  • Received : 2019.11.05
  • Accepted : 2019.11.21
  • Published : 2019.12.01

Abstract

This study tested various assumptions that simplified the configuration of the numerical model for unsaturated zone's contaminant transport to simulate the pathway to exposed point. This study investigated the contaminant migration through in the pollutant exposure pathway of vadoze zone for risk assessment of the contaminated site. For the purpose, generic scenarios as well as contaminant-based scenarios were simulated using the numerical code for transport of the contaminant in the pathway. The finite-difference one-dimensional transport with adsorption and biodegradation were considered, and it also assumed that the initial concentration was also depleted over time. The results of the generic-scenario show that as the groundwater infiltration rate decreases, the longer the path from the source to the groundwater level, the lower the concentration at the point of inflow into the groundwater level. In particular, in the case of high biodegradation rate and rapid depletion of pollutant sources, statistically outliers were found in the simulated results and generic scenarios was good at prediction.

본 연구는 오염부지의 위해성 평가를 위해 수치모의 기반 오염물질의 노출이동경로 평가에 활용가능한 개념모델을 제시하였다. 이를 위하여 1차원으로 유한차분 기법을 적용하여 지하수 내 오염물질 이송확산을 모의하였다. 불포화대 경로에서의 수리지질학적 및 오염물질 매개변수가 가질 수 있는 범위를 설정하여 범용 시나리오 및 오염물질별 시나리오를 구성하여 모의에 적용하였다. 모델에서는 흡착 및 생분해를 갖는 유한차분 1 차원 이송확산이 고려되었고, 또한 초기 농도가 시간이 지남에 따라 고갈되는 것을 가정하였다. 일반 시나리오의 결과는 지하수 침투율이 감소함에 따라, 오염원에서 지하수면까지의 경로가 길어질수록 지하수면으로 유입되는 지점의 농도 범위는 낮아졌다. 특히, 높은 생분해 속도와 오염원의 빠른 고갈의 경우, 범용 시나리오가 좁은 범위의 지하수 유입농도 예측치를 보여주었다.

Keywords

References

  1. ASTM (2000). Standard guide for risk-based corrective action, standard E2081-00 (Reapproved 2004), ASTM International, West Conshohocken, PA, USA, P. 95
  2. Chang, S. W., Moon, H. S., Lee, E., Joo, J. C. and Nam, K. (2019). "Numerical study of contaminant pathway for risk assessment in subsurface of contaminated sites." Journal of Soil and Groundwater Environment, Vol. 24, No. 3. pp. 13-23 (in Korean). https://doi.org/10.7857/JSGE.2019.24.3.013
  3. Korea Environment Institute (KEI) (2006). Improving coherence between soil and groundwater quality standards, RE-14.
  4. Mazzieri, F., Di Sante, M., Fratalocchi, E. and Pasqualini, E. (2016). "Modeling contaminant leaching and transport to groundwater in Tier 2 risk assessment procedures of contaminated sites." Environmental Earth Sciences, Vol. 75, No. 18, p. 1247 https://doi.org/10.1007/s12665-016-6043-1
  5. Ministry of Environment (MOE) (2018), Soil contamination risk assessment guideline, No. 283 (In Korean).
  6. Ryu, H. (2010). Development of realistic risk assessment framework for organic contaminants incorporating desorption-limited bioavailability and dilution attenuation factors, Ph.D. Dissertation, Seoul National University.
  7. United States Environmental Protection Agency (USEPA) (1996a) Soil screening guidance: user's guide, office of emergency and remedial response, Washington, DC. EPA/540/R-96/018. NTIS PB96-963505.
  8. United States Environmental Protection Agency (USEPA) (1996b) Soil screening guidance: technical background document. office of emergency and remedial response, Washington, DC. EPA/540/R-96/128. NTIS PB96-963502.
  9. United States Environmental Protection Agency (USEPA) (2019). EPA On-line Tools for Site Assessment Calculation, Available at: https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/retard.html (Accessed: October 29, 2019).
  10. Yeh, G. T. and Cheng, J. R. (1997). 2DFATMIC: User's manual of a two-dimensionalsubsurface flow, fate and transport of microbes and chemical model version 1.0., EPA/600/R-97/052, U.S. Environmental Protection Agency, Washington,D.C.
  11. Zheng, C. and Wang, P. P. (1999). MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater system; Documentation and user's guide, Contract Report SERDP-99-1, US Army Corps of Engineers, Washington, DC, USA.