DOI QR코드

DOI QR Code

Characteristic Analysis of High Speed Coaxial Magnetic Gear by Two-Dimensional Finite Element Analysis

2차원 유한요소 해석을 이용한 고속용 마그네틱 기어의 형상에 따른 특성 해석

  • Lee, Jeong-In (Dept. of Electrical Engineering, Chungnam National University) ;
  • Shin, Kyung-Hun (Dept. of Electrical Engineering, Chungnam National University) ;
  • Bang, Tae-Kyoung (Dept. of Electrical Engineering, Chungnam National University) ;
  • Lee, Sang-Hwa (Dept. of Electrical Engineering, Chungnam National University) ;
  • Choi, Jang-Young (Dept. of Electrical Engineering, Chungnam National University)
  • Received : 2018.03.22
  • Accepted : 2018.12.19
  • Published : 2019.01.01

Abstract

In this paper, the characteristics of the coaxial magnetic gear according to the shape of the same gear ratio are analyzed using the two - dimensional finite element analysis. The rotor shape is SMCMG, CPCMG and RCMG. After this we analyzed the characteristics according to three shapes. Also, the amount of permanent magnet used in each shape was compared. Next, characteristics analysis of the magnetic gear according to the shape at the same torque was performed. And the total weight and efficiency of the magnetic gears were compared and verified.

Keywords

DHJGII_2019_v68n1_36_f0001.png 이미지

그림 1 기계식 기어의 구조 [1] Fig. 1 Structure of mechanical gear [1]

DHJGII_2019_v68n1_36_f0002.png 이미지

그림 3 SMCMG의 구조 및 자속밀도 Fig. 3 Structure and magnetic flux density of SMCMG

DHJGII_2019_v68n1_36_f0003.png 이미지

그림 4 SMCMG 해석 결과 (a) 탈출 토크 특성 (b) 부하에 따른 토크 특성 (c) 부하에 따른 외측 회전속도 특성 (d) SMCMG 손실 및 토크 리플과 THD 특성 Fig. 4 Analysis result of SMCMG (a) characteristics of pull-out torque (b) characteristics of torque according to load (c) characteristics of outer rotation speed according to load (d) characteristics of SMCMG loss and torque ripple and THD

DHJGII_2019_v68n1_36_f0004.png 이미지

그림 5 CPCMG의 구조 및 자속밀도 Fig. 5 Structure and magnetic flux density of CPCMG

DHJGII_2019_v68n1_36_f0005.png 이미지

그림 6 CPCMG 해석 결과 (a) 탈출 토크 특성 (b) 부하에 따른 토크 특성 (c) 부하에 따른 외측 회전속도 특성 (d) CPCMG 손실 및 토크 리플과 THD 특성 Fig. 6 Analysis result of CPCMG (a) characteristics of pullout torque (b) characteristics of torque according to load (c) characteristics of outer rotation speed according to load (d) characteristics of CPCMG loss and torque ripple and THD

DHJGII_2019_v68n1_36_f0006.png 이미지

그림 7 RCMG의 구조 및 자속밀도 Fig. 7 Structure and magnetic flux density of RCMG

DHJGII_2019_v68n1_36_f0007.png 이미지

그림 8 RCMG 해석 결과 (a) 탈출 토크 특성 (b) 부하에 따른 토크 특성 (c) 부하에 따른 외측 회전속도 특성 (d) RCMG 손실 및 토크 리플과 THD 특성 Fig. 8 Analysis result of RCMG (a) characteristics of pullout torque (b) characteristics of torque according to load (c) characteristics of outer rotation speed according to load (d) characteristics of RCMG loss and torque ripple and THD

DHJGII_2019_v68n1_36_f0008.png 이미지

그림 10 동일 토크시 CPCMG 및 RCMG 해석 결과 (a) 부하에 따른 CPCMG 토크 특성 (b) CPCMG 손실 및 토크리플과 THD 특성 (c) 부하에 따른 RCMG 토크 특성 (d) RCMG 손실 및 토크리플과 THD 특성 Fig. 10 Analysis results of CPCMG and RCMG at the same torque (a) characteristics of CPCMG torque according to load (b) characteristics of CPCMG loss and torque ripple and THD (c) characteristics of RCMG torque according to load (d) characteristics of RCMG loss and torque ripple and THD

DHJGII_2019_v68n1_36_f0009.png 이미지

그림 11 해석결과에 따른 마그네틱 기어 효율 Fig. 11 Magnetic gear efficiency according to analysis result

DHJGII_2019_v68n1_36_f0010.png 이미지

그림 9 형상에 따른 마그네틱 기어의 동일 토크 특성 (a) 외측 토크 (b) 내측 토크 Fig. 9 Characteristics of Same torque at the magnetic gears according to shape (a) outer torque (b) inner torque

DHJGII_2019_v68n1_36_t0001.png 이미지

그림 2 마그네틱 기어의 구조 Fig. 2 Structure of magnetic gear

표 1 동축 마그네틱 기어의 설계 사양 Table 1 Design specification of coaxial magnetic gear

DHJGII_2019_v68n1_36_t0002.png 이미지

표 3 동축 마그네틱 기어의 형사에 따른 동일 설계 사양시 영구자석 및 철심 사용량 Table 3 Permanent magnet and core usage in the same design specification according to the shape of coaxial magnetic gear

DHJGII_2019_v68n1_36_t0003.png 이미지

표 4 동축 마그네틱 기어의 형사에 따른 동일 토크시 영구자석 및 철심 사용량 Table 4 Permanent magnet and core usage in the same torque according to the shape of coaxial magnetic gear

DHJGII_2019_v68n1_36_t0004.png 이미지

표 2 동축 마그네틱 기어의 형상에 따른 기어비 Table 2 Gear ratio according to the shape of coaxial magnetic gear

DHJGII_2019_v68n1_36_t0005.png 이미지

References

  1. R. K. Kunjam, and P. K. Sen, "Review on Analysis and Modification of Spur Gear Design", International Journal of Innovative Research in Technology, Vol. 2, No. 5, pp. 91-95, Oct. 2015.
  2. S. J. Kim, E. J. Park, S. Y. Jung, and Y. J. Kim, "Transfer Torque Performance Comparison in Coaxial Magnetic Gears with Different Flux-Modulator Shapes", IEEE Trans. Magn., Vol. 53, No. 6, Art No. 8202804, Jun. 2017.
  3. X. Yin, P. D. Pfister, and Y. Fang, "A Novel Magnetic Gear: Toward a Higher Torque Density", IEEE Trans. Magn., Vol. 51, No. 11, Art No. 8002804, Nov. 2015.
  4. R. G. Montague, C. Bingham, and K. Atallah, "Magnetic Gear Pole-Slip Prevention Using Explicit Model Predictive Control", IEEE/ASME Trans. Mechat., Vol. 18, No. 5, pp. 1535-1543, Oct. 2013. https://doi.org/10.1109/TMECH.2012.2207909
  5. H. Rashidi, and D. Pishdad, "Integrated Multispeed Magnetic Gears: A Novel Approach to Design of Magnetic Transmission Systems", IEEE Trans. Magn., Vol. 51, No. 4, Art No. 8700308, Apr. 2015.
  6. L. Shah, A. Cruden, and B. W. Williams, "A Variable Speed Magnetic Gear Box Using Contra-Rotating Input Shafts", IEEE Trans. Magn., Vol. 47, No. 2, pp. 431-438, Feb. 2011. https://doi.org/10.1109/TMAG.2010.2097273
  7. M. Fukuoka, K. Nakamura, and O. Ichinokura, "Dynamic Analysis of Planetary-Type Magnetic Gear Based on Reluctance Network Analysis", IEEE Trans. Magn., Vol. 47, No. 10, pp. 2414-2417, Oct. 2011. https://doi.org/10.1109/TMAG.2011.2157100
  8. X. Yin, Y. Fang, and P. D. Pfister, "A Novel Single-PM-Array Magnetic Gear with HTS Bulks", IEEE Trans. Appl. Supercond., Vol. 27, No. 4, Art No. 5202705, Jun. 2017.
  9. W. N. Fu, and L. Li, "Optimal Design of Magnetic Gears with a General Pattern of Permanent Magnet Arrangement", IEEE Trans. Appl. Supercond., Vol. 26, No. 7, Art No. 0606705, Oct. 2016.
  10. X. Zhao, and S. Niu, "Design and Optimization of a New magnetic-Geared Pole-Changing Hybrid Excitation Machine", IEEE Trans. Ind. Electron., Vol. 64, No. 12, pp. 9943-9952, Dec. 2017. https://doi.org/10.1109/TIE.2017.2716879
  11. L. Jing, L. Liu, M. Xiona, and D. Feng, "Parameters Analysis and Optimization Design for a Concentric Magnetic Gear Based on Sinusoidal Magnetizations", IEEE Trans. Appl. Supercond., Vol. 24, No. 5, Art No. 0600905, Oct. 2014.
  12. X. Zhu, L. Chen, L. Quan, Y. Sun, W. Hua, and Z. Wang, "A New Magnetic-Planetary-Geared Permanent Magnet Brushless Machine for Hybrid Electric Vehicle", IEEE Trans. Magn., Vol. 48, No. 11, pp. 4642-4645, Nov. 2012. https://doi.org/10.1109/TMAG.2012.2202276
  13. M. Filippini, and P. Alotto, "Coaxial Magnetic Gear Design and Optimization", IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, pp. 9934-9942, Dec. 2017. https://doi.org/10.1109/TIE.2017.2721918
  14. Y. Shi, J. Wei, and L. Jian, "Parallel-Path Power Flows in Magnetic-Geared Permanent Magnet Machines with Sandwiched Armature Stator", Chinese Journal of Electrical Engineering, Vol. 3, No. 1, pp. 16-26, Jun. 2017. https://doi.org/10.23919/CJEE.2017.7961318
  15. A. Rahideh, A. A. Vahai, M. Mardaneh, and T. Lubin, "Two-Dimensional Analysis Investigation of the Parameters and the Effects of Magnetisation Patterns on the Performance of Coaxial Magnetic Gears", IET Electrical Systems in Transportation, Vol. 7, No. 3, pp. 230-245, Jul. 2017. https://doi.org/10.1049/iet-est.2016.0070
  16. M. Chen, K. T. Chau, W. Li, and C. Liu, "Cost-Effectiveness Comparison of Coaxial Magnetic Gears with Different Magnet Materials", IEEE Trans. Magn., Vol. 50, No. 2, Art No. 7020304, Feb. 2014.
  17. M. Chen, K. T. Chau, W. Li, C. Liu, and C. Qiu, "Design and Analysis of a New Magnetic Gear with Multiple Gear Ratios", IEEE Trans. Appl. Supercond., Vol. 24, No. 3, Art No. 0501904, Jun. 2014.
  18. S. Niu, N. Shen, S. L. Ho, and W. N. Fu, "Design Optimization of Magnetic Gears Using Mesh Adjustable Finite-Element Algorithm for Improved Torque", IEEE Trans. Magn., Vol. 48, No. 11, pp. 4156-4159, Nov. 2012. https://doi.org/10.1109/TMAG.2012.2201920
  19. N. W. Frank, and H. A. Toliyat, "Analysis of the Concentric Planetary Magnetic Gear with Strengthened Stator and Interior Permanent magnet Inner Rotor", IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp. 1652-1660, Jun./Aug. 2011. https://doi.org/10.1109/TIA.2011.2154291
  20. J. X. Shen, H. Y. Li, H. Hao, and M. J. Jin, "A Coaxial Magnetic Gear with Consequent-Pole Rotors", IEEE Transactions on Energy Conversion, Vol. 32, No. 1, pp. 267-275, Mar. 2017. https://doi.org/10.1109/TEC.2016.2609338
  21. K. Aiso, K. Akatsu, and Y. Aoyama, "Reluctance Magnetic Gear and Flux Switching Magnetic Gear for high Speed Motor System", IEEE Energy Conversion Congress and Exposition, pp. 2445-2452, 2017.