DOI QR코드

DOI QR Code

Variation in the Properties of Contaminated Coastal Sediment with the Mixing of Alkaline Industrial By-product

알칼리성 산업부산물의 혼합에 따른 연안 오염퇴적물의 성상 변화

  • Park, Seongsik (Department of Ocean Engineering Pukyong National University) ;
  • Woo, Hee-Eun (Department of Ocean Engineering Pukyong National University) ;
  • Lee, In-Cheol (Department of Ocean Engineering Pukyong National University) ;
  • Kim, Do-Hyung (Department of Aquatic Life Medicine Pukyong National University) ;
  • Park, Jeonghwan (Department of Marine Bio-materials and Aquaculture Pukyong National University) ;
  • Kim, Jinsoo (Department of Land, Transport and Maritime Affairs Team National Assembly Research Service) ;
  • Kim, Kyunghoi (Department of Ocean Engineering Pukyong National University)
  • 박성식 (부경대학교 해양공학과 대학원) ;
  • 우희은 (부경대학교 해양공학과 대학원) ;
  • 이인철 (부경대학교 해양공학과) ;
  • 김도형 (부경대학교 수산생명의학과) ;
  • 박정환 (부경대학교 해양바이오신소재학과) ;
  • 김진수 (국회입법조사처 국토해양팀) ;
  • 김경회 (부경대학교 해양공학과)
  • Received : 2019.11.26
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

A mesocosm experiment considering water exchange was conducted to evaluate the change in the properties of contaminated coastal sediment. The contaminated coastal sediment sample was prepared by mixing with granulated coal ash(GCA), which is an alkaline industrial by-product. During one month of observation time, the phosphate concentration of the GCA sample case was measured to be 19.0 and 0.4 mg/L lower than that of the control sample at the pore water and overlying water, respectively. The hydrogen sulfide concentration of the GCA sample case was 5.0 mg/L, which is significantly lower than that of the control sample(112.5 mg/L). Further addition of GCA in the sediment reduced the concentrations of phosphate and hydrogen sulfide, and could enhance the adsorption reaction, when compared to the sediment without GCA. The dissolved oxygen concentration in the overlying water of the GCA sample was measured to be 3.47 mg/L higher than the control sample. From the above results, we confirmed that GCA is an effective material for reducing pollutants in coastal sediment.

알칼리성 산업부산물의 혼합에 따른 연안 오염퇴적물의 성상 변화를 평가하기 위해 해수 교환을 고려한 mesocosm 실험을 수행하였다. 실험시작 1개월 후 실험구의 인산인 농도는 대조구 대비 간극수와 직상수에서 각각 19.0, 0.4 mg/L 낮게 검출되었다. 이는 GCA에서 용출된 칼슘이온과 인산인의 흡착반응을 통한 간극수 내의 인 고정 및 직상수로의 용출 억제에 따른 결과로 판단된다. 실험구의 간극수 내 황화수소 농도는 5.0 mg/L로 112.5 mg/L인 대조구에 비해 매우 낮게 나타났으며, 실험구 직상수의 DO 농도는 대조구에 비해 3.47 mg/L 높게 나타났다. 이상의 결과로부터 알칼리성 산업부산물인 GCA는 연안 오염퇴적물의 개선에 효과적인 재료임을 확인하였다.

Keywords

References

  1. Asaoka, S., K. Yamamoto, and T. Yamamoto(2008), A preliminary study of coastal sediment amendment with granulated coal ash: nutrient elution test and experiment on Skeletonema costatum growth, J. Jpn. Soc. Water Environ, Vol. 31, pp. 455-462. https://doi.org/10.2965/jswe.31.455
  2. Asaoka, S., S. Hayakawa, K. H. Kim, K. Takeda, M. Katayama, and T. Yamamoto(2012), Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash, Journal of Colloid and Interface science, Vol. 377, pp. 284-290. https://doi.org/10.1016/j.jcis.2012.03.023
  3. Asaoka, S., T. Yamamoto, I. Toshioka, and H. Tanaka(2009), Remediation of coastal marine sediments using granulated coal ash, Journal of Hazardous Materials, Vol. 172, pp. 92-98. https://doi.org/10.1016/j.jhazmat.2009.06.140
  4. Billen, G., J. Garnier, C. Deligne, and C. Billen(1999), Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication, Science of The Total Environment, Vol. 243-244, pp. 43-52. https://doi.org/10.1016/S0048-9697(99)00327-7
  5. Jung, H. Y. and K. J. Cho(2003), SOD and Inorganic Nutrient Fluxes from Sediment in the Downstream of the Nagdong River, Korean J. Limnol, Vol. 36, No. 3, pp. 322-335.
  6. Katterer, T., M. Reichstein, O. Andren, and A. Lomander(1998), Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models, Biol Fertil Soils, Vol. 27, pp. 258-262. https://doi.org/10.1007/s003740050430
  7. Kim, K. H., I. C. Lee, S. H. Ryu, T. Saito, and T. Hibino(2014), Application of Granulated Coal Ash for Remediation of Coastal Sediment, Journal of the Korean Society for Marine Environment & Energy, Vol. 17, No. 1, pp. 1-7. https://doi.org/10.7846/JKOSMEE.2014.17.1.1
  8. Kim, K. M. and K. H. Kim(2018), A Study on Performance of Granulated Coal Ash on Remediation of Benthic Environment of Clayey Intertidal Zone, The Graduate School, Pukyong National University.
  9. Kim, K. M. and K. H. Kim(2019), Remediation of contaminated intertidal sediment by increasing permeability using active capping material, Journal of Environmental Manegement, Vol. 253, No. 109769, pp. 1-8.
  10. Kim, K. M., Y. C. Suh, I. C. Lee, C. G. Choi, and K. H. Kim(2019), Changes in Permeability and Benthic Environment of Coastal Sediment based on Calcium Salt Supplier, Journal of Coastal Research, Vol. 91, pp. 311-315. https://doi.org/10.2112/SI91-063.1
  11. Kim, N. S., H. Kang, M. S. Kwon, H. S. Jang, and J. G. Kim(2016), Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay, Journal of the Korean Society for Marine Environment and Energy, Vol. 19, No. 1. pp. 74-85. https://doi.org/10.7846/JKOSMEE.2016.19.1.74
  12. Li, R., J. J. Wang, B, Zhou, M. K. Awasthi, A. Ali, Z. Zhang, A. H. Lahori, and A. Mahar(2016), Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute, Bioresource Technology, Vol. 215, pp. 209-214. https://doi.org/10.1016/j.biortech.2016.02.125
  13. Maeng, J. H., T. Y. Kim, and D. H. Seo(2014), Minimizing Environmental Impact in Accordance with the Thermal Power Plant Ash Management (I), Korea Environment Institute.
  14. Ministry of Oceans and Fisheries(2018), Regulations on the Investigation and Purification and Restoration of Marine Pollutants, etc.
  15. Mogensen, G. L., K. U. Kjeldsen, and K. Ingvorsen(2005), Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate-reducing bacterium isolated from activated sludge, Anaerobe, Vol. 11, No. 6, pp. 339-349. https://doi.org/10.1016/j.anaerobe.2005.04.002
  16. Nagamoto, K., T. Hibino, K. Hino, and N. Touch(2015), Granulated coal ash-used method for remediation of organic matter enriched coastal sediments, Procedia Engineering, Vol. 116, pp. 326-333. https://doi.org/10.1016/j.proeng.2015.08.297
  17. Reis, M. A. M., J. S. Almeida, P. C. Lemos, and M. J. T. Carrondo(1992), Effect of Hydrogen Sulfide on Growth of Sulfate Reducing Bacteria, Biotechnology and Bioengineering, Vol. 40, pp. 593-600. https://doi.org/10.1002/bit.260400506
  18. Richard, D. and J. W. Morse(2005), Acid volatile sulfide (AVS), Marine Chemistry, Vol. 97, pp. 141-197. https://doi.org/10.1016/j.marchem.2005.08.004
  19. Takahashi, R., M. Yamana, and Y. Sato(2010), Symp. Marine Environment, School of Marine Science and Technology, Tokai University, Shizuoka, (2010), 19.
  20. Yamamoto, T., K. Harada, K. H. Kim, S. Asaoka, and I. Yoshioka(2013), Suppression of phosphate release from coastal sediments using granulated coal ash., Estuarine, Coastal and Shelf Science, Vol. 116, pp. 41-49. https://doi.org/10.1016/j.ecss.2012.06.010
  21. Zhang, T. C. and H. Pang(1999), Applications of Microelectrode Techniques To Measure pH and Oxidation-Reduction Potential in Rhizosphere Soil, Environ Sci Technol, Vol. 33, pp. 1293-1299. https://doi.org/10.1021/es981070x