DOI QR코드

DOI QR Code

Conformity Assessment of Machine Learning Algorithm for Particulate Matter Prediction

미세먼지 예측을 위한 기계 학습 알고리즘의 적합성 평가

  • Cho, Kyoung-woo (Department of Electrical, Electronics & Communication Engineering, Korea University of Technology and Education(KOREATECH)) ;
  • Jung, Yong-jin (Department of Electrical, Electronics & Communication Engineering, Korea University of Technology and Education(KOREATECH)) ;
  • Kang, Chul-gyu (Photo Team, SEMES Co., LTD.) ;
  • Oh, Chang-heon (Department of Electrical, Electronics & Communication Engineering, Korea University of Technology and Education(KOREATECH))
  • Received : 2018.09.07
  • Accepted : 2018.10.01
  • Published : 2019.01.31

Abstract

Due to the human influence of particulate matter, various studies are being conducted to predict it using past data measured in the atmospheric environment monitoring network. However, it is difficult to precisely set the measurement environment and detailed conditions of the previously designed predictive model, and it is necessary to design a new predictive model based on the existing research results because of the problems such as the missing of the weather data. In this paper, as a previous study for particulate matter prediction, the conformity of the algorithm for particulate matter prediction was evaluated by designing the prediction model through the multiple linear regression and the artificial neural network, which are machine learning algorithms. As a result of the prediction performance comparison through RMSE, 18.13 for the MLR model and 14.31 for the MLP model, and the artificial neural network model was more conformable for predicting the particulate matter concentration.

미세먼지의 인체 영향으로 인해 기존 대기 환경 모니터링 네트워크에서 측정된 과거 데이터를 활용하여 미세먼지를 예측하려는 다양한 연구가 진행되고 있다. 하지만 기존 설계된 예측 모델의 측정 환경, 세부 조건을 정확히 설정하기 어려우며, 측정된 기상 데이터의 누락과 같은 문제로 기존 연구 결과에 기반 한 새로운 예측 모델의 설계가 필요하다. 본 논문에서는 미세먼지 예측을 위한 선행 연구로서 다수의 연구에서 사용된 기계 학습 알고리즘인 다중 선형 회귀와 인공 신경망을 통해 예측 모델을 설계하여 미세먼지 예측을 위한 알고리즘의 적합성을 평가하였다. RMSE를 통한 예측 성능 비교 결과, MLR 모델의 경우 18.13, MLP 모델의 경우 14.31의 값을 보여 미세먼지 농도를 예측함에 있어 인공 신경망 모델이 예측에 더 적합함을 보였다.

Keywords

HOJBC0_2019_v23n1_20_f0001.png 이미지

Fig. 1 Simple Neural network example

HOJBC0_2019_v23n1_20_f0002.png 이미지

Fig. 2 PM10 prediction result using MLR

HOJBC0_2019_v23n1_20_f0003.png 이미지

Fig. 3 PM10 prediction result using ANN and MLP

HOJBC0_2019_v23n1_20_f0004.png 이미지

Fig. 4 MLP prediction results according to the number ofneurons

Table. 1 Parameters and algorithms of related studies

HOJBC0_2019_v23n1_20_t0001.png 이미지

Table. 2 RMSE comparison for each models

HOJBC0_2019_v23n1_20_t0002.png 이미지

References

  1. C. A. Pope III, D. W. Dockery, "Health effects of fine particulate air pollution: Lines that connect," Journal of the Air & Waste Management Association, vol. 56, no. 6, pp. 709-742, 2006. https://doi.org/10.1080/10473289.2006.10464485
  2. S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M.C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni, "Particulate matter, air quality and climate: Lessons learned and future needs," Atmospheric chemistry and physics, vol. 15, no. 14, pp. 8217-8299, 2015. https://doi.org/10.5194/acp-15-8217-2015
  3. World Health Organization (WHO), "Health effects of particulate matter: Policy implications for countries in eastern europe, caucasus and central asia," Regional Office for Europe, 2013.
  4. A. Valavanidis, K. Fiotakis, and T. Vlachogianni, "Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms," Journal of Environmental Science and Health, Part C, vol. 26, no. 4, pp. 339-362, 2008. https://doi.org/10.1080/10590500802494538
  5. J. O. Anderson, J. G. Thundiyil, and A. Stolbach, "Clearing the air: A review of the effects of particulate matter air pollution on human health," Journal of Medical Toxicology, vol. 8, no. 2, pp. 166-175, 2012. https://doi.org/10.1007/s13181-011-0203-1
  6. K. H. Kim, E. Kabir, and S. Kabir, "A review on the human health impact of airborne particulate matter," Environment international, vol. 74, pp. 136-143, 2015. https://doi.org/10.1016/j.envint.2014.10.005
  7. N. J. Hime, G. B. Marks, and C. T. Cowie, "A comparison of the health effects of ambient particulate matter air pollution from five emission sources," International Journal of Environmental Research and Public Health, vol. 15, no. 6, 2018.
  8. Airkorea -Station Information [internet]. Available: https://airkorea.or.kr/stationInfo/.
  9. K. T. Sohn, and D. H. Kim, "Development of statistical forecast model for PM10 concentration over Seoul," Journal of the Korean Data and Information Science Society, vol. 26, no. 2, pp. 289-299, 2015. https://doi.org/10.7465/jkdi.2015.26.2.289
  10. Y. J. Jung, K. W. Cho, C. G. Kang, and C. H. Oh, "Particulate matter prediction model using artificial neural network," in Proceeding of Korea Information and Communication Engineering, vol. 22. no. 2, Jeju, pp. 623-625, 2018.
  11. K. W. Cho, Y. J. Jung, C. G. Kang, and C. H. Oh, "Particulate matter prediction using multi-layer perceptron network," in Proceeding of Korea Information and Communication Engineering, vol. 22. no. 2, Jeju, pp. 620-622, 2018.
  12. A. Chaloulakou, G. Grivas, and N. Spyrellis, "Neural Network and multiple regression models for PM10 prediction in Athens: A comparative assessment," Journal of the Air & Waste Management Association, vol. 53, no. 10, pp. 1183-1190, 2003. https://doi.org/10.1080/10473289.2003.10466276
  13. S. Munir, M. T. Habeebullah, A. R. Seroji, E. A. Morsy, A. M. Mohammed, W. A. Saud, A. E. A. Abdou, and A. H. Awad, "Modeling particulate matter concentrations in Makkah, Applying a statistical modeling approach," Aerosol and Air Quality Research, vol. 13, no. 3, pp. 901-910, 2013. https://doi.org/10.4209/aaqr.2012.11.0314
  14. M. M. Dedovic, S. Avadakovic, I. Turkovic, N. Dautbasic, and T. Konjic, "Forecasting PM10 concentrations using neural networks and system for improving air quality," in proceeding of 2016 XI International Symposium on Telecommunications (BIHTEL), Sarajevo, pp. 1-6, 2016.
  15. J. W. Cha, and J. Y. Kim, "Development of data mining algorithm for implementation of fine dust numerical prediction model," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 4, pp. 595-601, 2018. https://doi.org/10.6109/JKIICE.2018.22.4.595
  16. S. Kim, "A study on prediction of blood donation number using multiple linear regression analysis," M.S. dissertation, Sungkyunkwan University, 2015.
  17. J. B. Ahn, and Y. M. Cha, "A comparison study of corrections using artificial neural network and multiple linear regression for dynamically downscaled winter temperature over South Korea," Asia-Pacific Journal of Atmospheric Sciences, vol. 41, no. 3, pp. 401-413, 2005.
  18. J. Choi, "A study on automatic composition based on neural network," M.S. dissertation, Ajou University, 2017.
  19. V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, "Efficient processing of deep neural networks: A tutorial and survey," in Proceedings of the IEEE, vol. 105, issue 12, 2017.
  20. D. Dubey, and G. S. Tomar, "Echelon based pose generalization of facial images approaches," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 1, pp. 63-75, 2017.

Cited by

  1. PM10 예보 정확도 향상을 위한 Deep Neural Network 기반 농도별 분리 예측 모델 vol.24, pp.1, 2020, https://doi.org/10.6109/jkiice.2020.24.1.8
  2. 기계학습 기반의 가스폭발위험범위 예측모델에 관한 연구 vol.58, pp.2, 2020, https://doi.org/10.9713/kcer.2020.58.2.248
  3. 인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링 vol.37, pp.6, 2019, https://doi.org/10.7780/kjrs.2021.37.6.2.10