DOI QR코드

DOI QR Code

Change in amygdalin contents of maesil (Prunus mume) wine according to preparation steps and its characteristics

매실 와인의 제조공정에 따른 아미그달린(amygdalin) 함량의 변화와 품질 특성

  • Cho, Jeong-Won (Graduate school of Biotechnology, Kyung Hee University) ;
  • Kim, Byung-Yong (Graduate school of Biotechnology, Kyung Hee University) ;
  • Choi, Soo-Jin (Major of Food Science and Technology, Division of Applied Food System, Seoul Women's University) ;
  • Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University) ;
  • Kim, Hyun-Seok (Major of Food Science and Biotechnology, Division of Bio-convergence, College of Convergence and Integrated Science, Kyonggi University)
  • 조정원 (경희대학교 생명공학원) ;
  • 김병용 (경희대학교 생명공학원) ;
  • 최수진 (서울여자대학교 식품응용시스템학부 식품공학전공) ;
  • 정진부 (국립안동대학교 생약자원학과) ;
  • 김현석 (경기대학교 융합과학대학 바이오융합학부 식품생물공학전공)
  • Received : 2018.11.10
  • Accepted : 2018.11.26
  • Published : 2019.02.28

Abstract

The purpose of this study was to compare the amygdalin content, alcohol content, pH, titratable acidity, and color of maesil wine prepared with two different manufacturing processes. Maesil wine was made from maesil chung, and maesil was preserved (MW1) or removed (MW2) before fermentation. During aging, amygdalin content in all the wines was gradually reduced, and the content of MW2 was less than that of the other. The alcohol content, pH, and titratable acidity ranged from around 9.87-10.94, 3.57-3.80, and 8.89-10.68%, respectively. The difference between the samples was not significant. For color, MW1 had lower L and higher a and b values than MW2. In this study, the difference in physicochemical properties according to the presence of maesil was not significant, indicating no degradation of the quality according to the manufacturing processes. However, the MW2 showed a reduction in amygdalin contents.

매실청을 제조한 후 매실을 제거하지 않은 매실청(MW1)과 매실을 제거한 매실청(MW2)을 발효하여 매실 와인을 제조하였다. 매실청은 당침 기간이 증가하면서 아미그달린 함량은 증가하였다. 매실 와인 제조과정별 아미그달린 함량을 비교하면, MW1이 MW2보다 모든 과정에서 높은 수준의 아미그달린을 함유하고 있었다. 매실청의 희석부터 효모의 첨가까지는 아미그달린 함량의 변화는 유의적이나 공정별 차이는 미미한 수준이었다. 그러나 MW1의 경우 1차 발효 후 아미그달린 함량이 유의적으로 증가한 후 2차 발효와 병입까지 유의적인 변화를 보이지 않았다. 반면 MW2는 효모 첨가 후 1차와 2차 발효를 거쳐 병입될 때까지 미미하지만 유의적으로 아미그달린 함량이 감소하였다. 완성된 매실 와인의 숙성기간이 증가할수록 아미그달린 함량은 지속적으로 감소하였고, MW1이 MW2보다 아미그달린 함량에 있어 빠른 감소가 관찰되었다. 본 연구에서 제조된 매실 와인들의 알코올 함량은 숙성 초기에 10.11-10.94%이었으며, 3개월 숙성 후 9.87-10.30%를 나타내었고, 처리군들 사이에서 또는 숙성기간별 유의적인 차이는 없었다. 또한 pH와 적정산도는 숙성기간이 연장되면서 유의적인 변화가 없거나 소폭 감소하는 양상을 나타내었다. 그러나 MW2에 비해 MW1의 pH는 낮고, 적정산도는 높았다. 색 특성은 숙성기간이 증가하면서 명도는 감소하고, 적색도와 황색도는 증가하는 공통적인 양상을 보였지만, MW1이 MW2보다 밝은 색 특성을 나타내었다. 결과적으로 낮은 도수의 술을 선호하는 소비자들의 최근 술 소비 패턴과 최소한의 아미그달린 함량을 고려할 때, 전통적으로 높은 알코올 농도의 담금주에 매실을 재어 침출하는 침출주 형태보다는 효모에 의해 매실청을 발효시켜 제조하는 매실 발효주(와인)이 매실주로서 적합한 것으로 판단된다.

Keywords

SPGHB5_2019_v51n1_42_f0001.png 이미지

Fig. 1. Preparation steps of maesil wines.

SPGHB5_2019_v51n1_42_f0002.png 이미지

Fig. 2. Amygdalin content of flesh and seed from freeze-dried maesil (A) and its changes of a sugared maesil liquid during sugaring periods (B).

SPGHB5_2019_v51n1_42_f0003.png 이미지

Fig. 3. Changes in amygdalin according to the preparation steps of maesil wines.

SPGHB5_2019_v51n1_42_f0004.png 이미지

Fig. 4. Changes in amygdalin of maesil wines over ripening periods for 3 months.

Table 1. HPLC conditions for amygdalin quantification

SPGHB5_2019_v51n1_42_t0001.png 이미지

Table 2. Mean1) values for alcohol content, pH, and titratable acidity of maesil wines during ripening

SPGHB5_2019_v51n1_42_t0002.png 이미지

Table 3. Mean1) values for color characteristics of maesil wines during ripening

SPGHB5_2019_v51n1_42_t0003.png 이미지

References

  1. Abban S, Brimer L, Abdelgadir WS, Jakobsen M, Thorsen L. Screening for Bacillus subtilis group isolates that degrade cyanogens at pH 4.5-5.0. Int. J. Food Microbiol. 161: 31-35 (2013) https://doi.org/10.1016/j.ijfoodmicro.2012.11.019
  2. Bae SJ, Choi HW, Kim SY, Kim BY, Kim HS. Amygdalin contents of maesil and maesil-based products (abstract no. P-65). In: Abstracts: 2017 Fall Conference and Symposium of Korean Society for Food Engineering. November 2, Lakai Sandfine Resort Convention Center, Gangneung, Korea. Korean Society for Food Engineering, Anseong, Korea (2017)
  3. Cha HS, Hwang JB, Park JS, Park YK, Jo JS. Changes in chemical composition of mume (Prunus mume Sieb. et Zucc) fruits during maturation. Korean J. Postharvest Sci. Technol. 6: 481-487 (1999)
  4. Chae MH, Park LY, Lee SH. Effect of temperature on changes of maesil (Prunus mume) liqueur during leaching and ripening. Korean J. Food Preserv. 15: 311-316 (2008)
  5. Chang J, Zhang Y. Catalytic degradation of amygdalin by extracellular enzymes from Aspergillus niger. Process Biochem. 47: 195-200 (2012) https://doi.org/10.1016/j.procbio.2011.10.030
  6. Cho JW, Kim SY, Baik MY, Kim HS, Kim BY. Changes in amygdalin contents of maesil wine and liqueur during the storage period (abstract no. P-16). In: Abstracts: 2018 Spring Conference and Symposium of Korean Society for Food Engineering. April 27, Seoul Women's University International Conference Room, Seoul, Korea. Korean Society for Food Engineering, Anseong, Korea (2018)
  7. Choi HS, Kim MK, Park HS, Kim YS, Shin DH. Alcoholic fermentation of Bokbunja (Rubus coreanus Miq.) wine. Korean J. Food Sci. Technol. 38: 543-547 (2006)
  8. Do B, Kwon H, Lee DH, Nah AH, Choi YJ, Lee SY. Removal of cyanogenic compounds in apricot kernel during heating process. J. Fd. Hyg. Safety 22: 395-400 (2007)
  9. Francisco IA, Pinotti MHP. Cyanogenic glycosides in plants. Braz. Arch. Biol. Techn. 43: 487-492 (2000) https://doi.org/10.1590/S1516-89132000000500007
  10. Hwang LH, Kim AK, Park KA, Kim JY, Hwang IS, Chae YZ. The effect of raw material, alcohol content, and trans-resveratrol on the formation of ethyl carbamate in plum wine. J. Fd. Hyg. Safety 24: 194-199 (2009)
  11. Jung GT, Ju IO, Ryu J, Choi JS, Choi YG. Studies on manufacture of wine using apricot. Korean J. Food Preserv. 10: 493-497 (2003)
  12. Kang MY, Jeong YH, Eun JB. Physical and chemical characteristics of flesh and pomace of Japanese apricots (Prunus mume Sieb. et Zucc). Korean J. Food Sci. Technol. 31: 1434-1439 (1999)
  13. Kim NY, Eom MN, Do YS, Kim JB, Kang SH, Yoon MH, Lee JB. Determination of ethyl carbamate in maesil wine by alcohol content and ratio of maesil (Prunus mume) during ripening period. Korean J. Food Preserv. 20: 429-434 (2013) https://doi.org/10.11002/kjfp.2013.20.3.429
  14. Kim YS, Jeong DY, Shin DH. Optimum fermentation conditions and fermentation characteristics of mulberry (Morus alba) wine. Korean J. Food Sci. Technol. 40: 63-69 (2008)
  15. Kim YD, Koo SK, Hyun KH. Contents of cyanogenic glucosides in processed foods and during ripening of ume according to varieties and picking date. Korean J. Food Preserv. 9: 42-45 (2002)
  16. Kim EJ, Lee HJ, Jang JW, Kim IY, Kim DH, Kim HA, Lee SM, Jang HW, Kim SY, Jang YM, Im DK, Lee SH. Analytical determination of cyanide in maesil (Prunus mume) extracts. Korean J. Food Sci. Technol. 42: 130-135 (2010a)
  17. Kim JY, Yi YH. pH, Acidity, color, amino acids, reducing sugars, total sugars, and alcohol in puffed millet powder containing millet takju during fermentation. J. Food Sci. Technol. 42: 727-732 (2010b)
  18. Lee SH, Park LY, Chae MH. Effects of alcohol concentration on quality changes of maesil (Prunus mume) liqueur during leaching and ripening. Korean J. Food Preserv. 14: 552-556 (2007)
  19. Lee JE, Won YD, Kim SS, Koh KH. The chemical characteristics of Korean red wine with different grape varieties. Korean J. Food Sci. Technol. 34: 151-156 (2002)
  20. Lim JW, Jeong JT, Lim YT. Preparing method of stone fruits wine having reduced cyanide. Korean Patent 10-2011-0004601 (2011)
  21. Menon R, Munjal N, Sturino JM. Characterization of amygdalindegrading Lacotobacillus species. J. Appl. Microbiol. 118: 443-463 (2014) https://doi.org/10.1111/jam.12704
  22. Park LY, Chae MH, Lee SH. Effect of ratio of maesil (Prunus mume) and alcohol on quality changes of maesil liqueur during leaching and ripening. Korean J. Food Preserv. 14: 645-649 (2007)
  23. Shim KH, Sung NK, Choi JS, Kang KS. Changes in major components of Japanese apricot during ripening. J. Korean Soc. Food Sci. Nutr. 18: 101-108 (1989)
  24. Silem A, Gnter HO, Einfeldt J, Boualia A. The occurrence of mass transport processes during the leaching of amygdalin from bitter apricot kernels: detoxification and flavour improvement. Int. J. Food Sci. Tech. 41: 201-213 (2006) https://doi.org/10.1111/j.1365-2621.2005.01049.x
  25. Son SJ, Jeong YJ, Kim SY, Choi JH, Kim NY, Lee HS, Bae JM, Kim SI, Lee HS, Shin JS, Han JS. Analysis of amygdalin of content Prunus mume by variety, harvest time, and fermentation conditions. J. Korean Soc. Food Sci. Nutr. 46: 721-729 (2017) https://doi.org/10.3746/JKFN.2017.46.6.721
  26. Tunel G, Nout MJR, Brimer L. The effects of grinding, soaking and cooking on the degradation of amygdalin of bitter apricot seeds. Food Chem. 53: 447-451 (1995) https://doi.org/10.1016/0308-8146(95)99841-M