DOI QR코드

DOI QR Code

THE SECOND-ORDER STABILIZED GAUGE-UZAWA METHOD FOR INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY

  • Kim, Taek-cheol (Department of Mathematics, Kangwon National University) ;
  • Pyo, Jae-Hong (Department of Mathematics, Kangwon National University)
  • Received : 2018.11.20
  • Accepted : 2019.03.27
  • Published : 2019.03.30

Abstract

The Navier-Stokes equations with variable density are challenging problems in numerical analysis community. We recently built the 2nd order stabilized Gauge-Uzawa method [SGUM] to solve the Navier-Stokes equations with constant density and have estimated theoretically optimal accuracy. Also we proved that SGUM is unconditionally stable. In this paper, we apply SGUM to the Navier-Stokes equations with nonconstant variable density and find out the stability condition of the algorithms. Because the condition is rather strong to apply to real problems, we consider Allen-Cahn scheme to construct unconditionally stable scheme.

Keywords

E1KKMK_2019_v27n1_193_f0001.png 이미지

FIGURE 1. A low Atwood ratio problem of Algorithm 1 with finite element (P1, P1, P1) for (u, p, ρ) at Re = 1000(density contours 1.4 ≤ ρ ≤ 1.6)

E1KKMK_2019_v27n1_193_f0002.png 이미지

FIGURE 2. A low Atwood ratio problem of Algorithm 1 with finite element (P1, P1, P1) for (u, p, ρ) at Re =5000(density contours 1.4 ≤ ρ ≤ 1.6)

E1KKMK_2019_v27n1_193_f0003.png 이미지

FIGURE 3. A high Atwood ratio problem of Algorithm 1 with finite element (P1, P1, P1) for (u, p, ρ) at Re =1000(density contours 2 ≤ ρ ≤ 4)

E1KKMK_2019_v27n1_193_f0004.png 이미지

FIGURE 4. A low Atwood ratio problem of Algorithm 4 with finite element (P1, P1, P1) for (u, p, ρ) at Re =1000(density contours 1.4 ≤ ρ ≤ 1.6)

E1KKMK_2019_v27n1_193_f0005.png 이미지

FIGURE 5. A low Atwood ratio problem of Algorithm 4 with finite element (P1, P1, P1) for (u, p, ρ) at Re =5000(density contours 1.4 ≤ ρ ≤ 1.6)

TABLE 2. Error and convergence rate of Algorithm 2 with finite element (P2, P1, P1) for (u, p, ρ), μ = 1 and τ = 0:1 × h

E1KKMK_2019_v27n1_193_t0001.png 이미지

TABLE 1. Error and convergence rate of Algorithm 1 with finite element (P2, P1, P1) for (u, p, ρ), μ = 1 and τ = 0.1 × h

E1KKMK_2019_v27n1_193_t0002.png 이미지

TABLE 3. Error and convergence rate of Alrorithm 3 with finite element (P2, P1, P1) for (u, p, ρ), μ = 1 and τ = 0:1 × h

E1KKMK_2019_v27n1_193_t0003.png 이미지

References

  1. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Ac ta Metallurgica, 27 (1979), 1085-1095. https://doi.org/10.1016/0001-6160(79)90196-2
  2. Alexandre Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Scioences, vol. 159, Springer, New York, 2004.
  3. J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows, J. comput. Phys, 165 (2000), 167-188. https://doi.org/10.1006/jcph.2000.6609
  4. J.-.L. Guermond and A. Salgado, A spliiting method for incompressible ows with variable density based on a pressure Poisson equation, J. comput. Phys, 228 (2009), 2834-2846 https://doi.org/10.1016/j.jcp.2008.12.036
  5. J.-.L. Guermond and A. Salgado, Error analysis of a fractional time-stepping technique for incompressible ows with variable density, SIAM J. Numer. Anal., 49 (2011), 917-944. https://doi.org/10.1137/090768758
  6. J.L. Guermond and J. Shen, On the error estimates of rotational pressure-correction projection methods, Math. Comp. 73 (2004), 1719-1737. https://doi.org/10.1090/S0025-5718-03-01621-1
  7. F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), 251-265. https://doi.org/10.1515/jnum-2012-0013
  8. Claes Johnson, Numerical solution of partial differntial equations by the finite element method, Cambridge University Press, Cambridge, 1987.
  9. J. Kim, Y. Li, H.G. Lee and D. Jeong, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Comput. Math. Appl. 60 (2010), 1591-1606. https://doi.org/10.1016/j.camwa.2010.06.041
  10. J.C. Latche and K. Saleh, A convergnet staggered scheme for the variable density incompressible Navier-Stokes equations, Math. Comp. accepted for publication
  11. R.H. Nochetto and J.-H. Pyo, A finite element gauge-Uzawa method. part I : the Navier-Stokes equations, SIAM J. Numer. Anal. 43 (2005), 1043-1068. https://doi.org/10.1137/040609756
  12. R.H. Nochetto and J.-H. Pyo, A finite element gauge-Uzawa method. part II : Boussinesq equations, Math. Models Methods Appl. Sci. 16 (2006), 1599-1626. https://doi.org/10.1142/S0218202506001649
  13. J.-H. Pyo, Error estimates for the second order semi-discrete stabilized gauge-Uzawa method for the Navier-Stokes equations, Inter. J. Numer. Anal. & Model. 10 (2013), 24-41.
  14. J.-H. Pyo and J. Shen, Normal mode analysis of second-order projection methods for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), 817-840.
  15. J.-H. Pyo and J. Shen, Gauge-Uzawa methods for incompressible flows with variable density, J. Comput. Phys 221 (2007), 184-197.
  16. J. Shen, X. Yang, J. J. Feng and C. Liu, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys 218 (2006), 417-428. https://doi.org/10.1016/j.jcp.2006.02.021
  17. R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, 2001.
  18. L.J.P. Timmermanns, P.D. Minev, and F.N. Van De Vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Num. Meth. Fluids 22 (1996), 673-688. https://doi.org/10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
  19. Gretar Tryggvason, Numerical simulations of the Ralyleigh-Taylor instability, J. Comput. Phys 75 (1988), 253-282. https://doi.org/10.1016/0021-9991(88)90112-X