DOI QR코드

DOI QR Code

A Numerical Analysis on Effect of Baffles in a Stirred Vessel

교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구

  • Received : 2017.09.29
  • Accepted : 2019.01.15
  • Published : 2019.02.28

Abstract

The flow characteristics in a stirred tank are very useful in a wide variety of industrial applications. Generally, the flow pattern, power consumption and mixing time in stirred vessels depend not only on the design of the impeller, but also on the tanks' geometry and internal structure. In this study, the analysis of an unstable and unsteady complicated flow characteristics generated by the interaction between the baffle shape and impeller were performed using the ANSYS FLUENT LES Turbulence Model. The study compared the predictions of CFD with the interaction between two types of rotating impellers (axial and radial flows) and the shapes of three baffles. The results of the comparison verified that the design model showed a relatively efficient trend in the mixing flow fields and characteristics around the impeller and baffles during agitation.

교반기에서의 유동 특성은 광범위한 산업 분야에서 매우 유용하다. 일반적으로 교반되는 용기에서의 유동 패턴, 전력 소비 및 혼합 시간은 임펠러의 설계뿐만 아니라 용기 형상 및 내부 구조에 달려 있다. 본 연구에서는 베플 형상과 임펠러의 상호 작용에 의해 생성되는 불안정하고 비정상상태의 복잡한 유동 특성 분석을 ANSYS FLUENT LES 난류 모델을 사용하여 수행하였다. Axial Flow 와 Radial Flow 두 가지 타입의 회전 임펠러와 3가지 베플의 형상 사이의 상호 작용과 영향을 전산유체역학(CFD)으로 예측 비교함으로써 교반 시 임펠러와 베플 주변에서의 유동 특성과 혼합 유동장에서 상대적으로 효율적인 경향을 보이는 설계 모델을 검증할 수 있었다.

Keywords

OJSSBW_2019_v13n1_1_f0001.png 이미지

Fig. 1 Schematic of mixing system

OJSSBW_2019_v13n1_1_f0002.png 이미지

Fig. 2 Baffle shapes for CFD

OJSSBW_2019_v13n1_1_f0003.png 이미지

Fig. 3 Geometry of Radial flow impeller

OJSSBW_2019_v13n1_1_f0004.png 이미지

Fig. 4 Geometry of Axial flow impeller

OJSSBW_2019_v13n1_1_f0005.png 이미지

Fig. 5-1 Schematic of mixing vessel

OJSSBW_2019_v13n1_1_f0006.png 이미지

Fig. 5-2 Computational model on xy plane(z=0)

OJSSBW_2019_v13n1_1_f0007.png 이미지

Fig. 6-1 Contours of velocity magnitude with radial flow impeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0008.png 이미지

Fig. 6-2 Contours of velocity magnitude with radial flow impeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0009.png 이미지

Fig. 7-1 Velocity vector field with radial flow impeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0010.png 이미지

Fig. 7-2 Velocity vector field with radial flowimpeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0011.png 이미지

Fig. 8-1 Contours of velocity magnitude with radial flow impeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0012.png 이미지

Fig. 8-2 Contours of velocity magnitude with radial flow impeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0013.png 이미지

Fig. 9-1 Velocity vector field with radial flow impeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0014.png 이미지

Fig. 9-2 Velocity vector field with radial flow impeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0015.png 이미지

Fig. 10-1 Contours of velocity magnitude with axial flow impeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0016.png 이미지

Fig. 10-2 Contours of velocity magnitude with axial flow impeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0017.png 이미지

Fig. 11-1 Velocity vector field with axial flowimpeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0018.png 이미지

Fig. 11-2 Velocity vector field with axial flow impeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0019.png 이미지

Fig. 12-1 Contours of velocity magnitude with axial flow impeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0020.png 이미지

Fig. 12-2 Contours of velocity magnitude with axial flow impeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0021.png 이미지

Fig. 13-1 Velocity vector field with axial flow impeller and baffle (a)(b)

OJSSBW_2019_v13n1_1_f0022.png 이미지

Fig. 13-2 Velocity vector field with radial flow impeller and baffle (c)(d)

OJSSBW_2019_v13n1_1_f0023.png 이미지

Fig. 14 Hv with radial impeller and baffles

OJSSBW_2019_v13n1_1_f0024.png 이미지

Fig. 15 Hv with axial impeller and baffles

OJSSBW_2019_v13n1_1_f0025.png 이미지

Fig. 16 Vv with radial impeller and baffles

OJSSBW_2019_v13n1_1_f0026.png 이미지

Fig. 17 Vv with axial impeller and baffles

Table 1 Dimensions for mixing equipment

OJSSBW_2019_v13n1_1_t0001.png 이미지

References

  1. V. W. Uhl and J. B. Gray (Eds.), "Mixing: Theory and Practice," Vol. III, Academic Press, New York (1986)
  2. S. Nagata, M. Nishicawa, A. Inoue and Y. Okamoto "Turbulence in non-baffled mixing vessel," Journal of Chemical Engineering of Japan, Vol. 8, No. 3, pp. 243-248, June 1975. https://doi.org/10.1252/jcej.8.243
  3. Edward, L. Paul., Victor, A. Aiemo-Obeng., and Suanne, M. Kresta., 2004, "Handbook of Industrial Mixing Science and Practice," A John Wiley & Sons, Inc., Publication.
  4. C. Kim, S. Yong, C. Won, and N. Hur, "Transient Simulation of Solid/Liquid Two-Phase Flow in a Stirred Tank," Proc. of The 5th National Conference on Fluids Engineering, Cheju, Korea, pp. 236-239, March 2008.
  5. C. Kim, C. Won, and N. Hur, "Transient Simulation of Solid Particle Distribution with Baffles Design Parameters in a Stirred Tank," Proc. of Conference on Korean Society for Computational Fluids Engineering, pp. 171-175, March 2008.
  6. Nienow, A, W., "On Impeller Circulation and Mixing Effectiveness in the Turbulent Flow Regime," Chemical Engineering Science, Vol. 52, Issue. 15, pp. 2557-2565. 1997. https://doi.org/10.1016/S0009-2509(97)00072-9
  7. D. Kim, and K. Kim, "Computational Flow Analysis of a Large Scale Mixer for Nanopowder Dispersion in Coating Liquid," Journal of the Semiconductor & Display Technology, Vol. 12, No. 3, September, 2013.
  8. J. Cha, S. and S. Yoon, "Flow Characteristics of Agitator for Manufacturing Microcapsules," Proc. of Korean Society for Precision Engineering, Yeosu, Korea, pp. 507-508, Oct, 2016.
  9. Y. Choi, J. Choi, D. Kim, and N. Hur, "A Numerical Analysis on Mixing Performance for Various Types of Turbine Impeller in a Stirred Vessel," Korean Society for Fluid Machinery, Vol. 16, No. 1, pp. 47-55, 2013. https://doi.org/10.5293/kfma.2013.16.1.047
  10. M. Kim, K. Lee, and K. Park, "Analysis of Fluid Flows in a Stirred Tank Using Computational Fluid Dynamics," Korean Chem. Eng. Res., Vol. 16, No. 3, pp. 337-341, 2010.
  11. D. Kim, S. Bae, and J. Park, "Study on the Industrial Agitator's Impeller Shape Analysis Using CFD and Reverse Engineering," Korean Society of Computational Design and Engineering, Vol. 11, No. 5, pp. 359-364, 2006.
  12. "Fluid and Gas Dispersion in Agitated Tanks," Macgraw-Hill, 1991.
  13. ANSYS CFX Solver Manual 2009
  14. ANSYS FLUENT/CFD Manual 2016
  15. Yeong-Taek. Lim and Moon-sang. Kim, "Extension of Incompressible Flow Solver Algorithm to Analyze Compressible Flow field" Journal of Aerospace System Engineering, Vol. 2, No. 2, pp. 20-27, 2008