DOI QR코드

DOI QR Code

Thermal Buckling Characteristics for Thermal Protection System Panel Using Ritz Method

리츠 법을 이용한 열방어 시스템 패널의 열 좌굴 특성 연구

  • Lee, Heesoo (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Yongha (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Jungsun (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 이희수 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 김용하 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2018.09.06
  • Accepted : 2019.02.13
  • Published : 2019.02.28

Abstract

High speed vehicles are subjected to high thermal loadings due to aerodynamic heating during ascent and reentry. Since a thermal protection system panel is mechanically constrained, it may cause thermal buckling under excessive thermal loadings. The thermal buckling could disturb the field of flow and make aerodynamic characteristics unstable. It is thus necessary to design the thermal protection system panel to prevent thermal buckling. This study defines the analytical model of temperature distribution using the finite difference method for the thermal protection system panel with large temperature differences inside and outside. This paper proposes the approximate model of the thermal buckling characteristics for the thermal protection system panel through the use of the Ritz method. The validity of the present method was verified by comparing the results of the finite element analysis. Furthermore, this research performs the parametric analysis of the thermal buckling characteristics for the thermal protection system panel by using the approximate model.

초고속 비행체는 발사 및 재진입 시 공력 가열에 의해 높은 열 하중을 받는다. 초고속 비행체의 외피 구조물인 열방어 시스템 패널은 기계적으로 구속되어 있기 때문에 고온 가열 시 열 좌굴이 발생할 수도 있다. 이는 초고속 비행체의 유동장에 변화를 주어 공력특성을 불안정하게 한다. 따라서 열방어 시스템 패널은 초고속 비행에 의한 공력가열 시 비행안정성을 유지하기 위해 열 좌굴을 방지하도록 설계되어야 한다. 본 논문에서는 운용 시 안팎에 큰 온도차가 존재하는 열방어 시스템 패널에 대해 유한차분법을 사용하여 열전달 특성을 분석하였으며, 리츠 법을 사용하여 열 좌굴 특성에 대한 근사적 모델을 제안하였다. 또한 정의된 근사적 모델의 정확도를 검증하기 위해 유한요소 해석결과와 비교하였다. 마지막으로, 수립된 근사 기법을 바탕으로 열방어 시스템 패널의 좌굴 발생 온도에 대한 매개변수 분석을 수행하였다.

Keywords

OJSSBW_2019_v13n1_18_f0001.png 이미지

Fig. 1 Configuration of TPS panel

OJSSBW_2019_v13n1_18_f0002.png 이미지

Fig. 2 Plate model of TPS panel

OJSSBW_2019_v13n1_18_f0003.png 이미지

Fig. 3 Schematic diagram of finite-difference model of the TPS panel

OJSSBW_2019_v13n1_18_f0004.png 이미지

Fig. 4 2D finite element model of TPS panel

OJSSBW_2019_v13n1_18_f0005.png 이미지

Fig. 5 1st mode shape of TPS panel for 4S BC

OJSSBW_2019_v13n1_18_f0006.png 이미지

Fig. 6 2nd mode shape of TPS panel for 4S BC

OJSSBW_2019_v13n1_18_f0007.png 이미지

Fig. 7 3rd mode shape of TPS panel for 4S BC

OJSSBW_2019_v13n1_18_f0008.png 이미지

Fig. 8 1st mode shape of TPS panel for 4C BC

OJSSBW_2019_v13n1_18_f0009.png 이미지

Fig. 9 2nd mode shape of TPS panel for 4C BC

OJSSBW_2019_v13n1_18_f0010.png 이미지

Fig. 10 3rd mode shape of TPS panel for 4C BC

OJSSBW_2019_v13n1_18_f0011.png 이미지

Fig. 11 Critical buckling temperature under uniform temperature distribution for 4S BC

OJSSBW_2019_v13n1_18_f0012.png 이미지

Fig. 12 Critical buckling temperature under uniform temperature distribution for 4C BC

OJSSBW_2019_v13n1_18_f0013.png 이미지

Fig. 13 Tcr according to the thickness of each layerfor 4S BC

OJSSBW_2019_v13n1_18_f0014.png 이미지

Fig. 14 Tcr according to the thickness of each layerfor 4C BC

Table 1 Specification of TPS panel

OJSSBW_2019_v13n1_18_t0001.png 이미지

Table 2 Material properties of Inconel625

OJSSBW_2019_v13n1_18_t0002.png 이미지

Table 3 Material properties of Saffil alumina

OJSSBW_2019_v13n1_18_t0003.png 이미지

Table 4 Material properties of Ti-4Al-6V

OJSSBW_2019_v13n1_18_t0004.png 이미지

Table 5 Results of the modal analysis using the present method and finite element method for 4S BC

OJSSBW_2019_v13n1_18_t0005.png 이미지

Table 6 Results of the modal analysis using the present method and finite element method for 4C BC

OJSSBW_2019_v13n1_18_t0006.png 이미지

Table 7 Comparison of Ritz method and finite element method's results for 4S BC

OJSSBW_2019_v13n1_18_t0007.png 이미지

Table 8 Comparison of Ritz method and finite element method’s results for 4C BC

OJSSBW_2019_v13n1_18_t0008.png 이미지

Table 9 Results of parametric analysis for 4S BC

OJSSBW_2019_v13n1_18_t0009.png 이미지

Table 10 Results of parametric analysis for 4C BC

OJSSBW_2019_v13n1_18_t0010.png 이미지

References

  1. M. L. Blosser, "Development of Advanced Metallic Thermal-Protection-System Prototype Hardware," Journal of Spacecraft and Rockets, Vol. 41, No. 2, March-April, 2004, pp. 183-194. https://doi.org/10.2514/1.9179
  2. W. L. Ko, "Mechanical and Thermal Buckling Analysis of Rectangular Sandwich Panels Under Different Edge Conditions," NASA TM-4585, 1994.
  3. W. L. Ko, "Thermal Buckling Analysis of Rectangular Panels Subjected to Humped Temperature Profile Heating," NASA/TP-2004-212041, 2004.
  4. J. F. Rakow, "Thermal Buckling of Metal Foam Sandwich Panels for Convective Thermal Protection Systems," Journal of Spacecraft and Rockets, Vol. 42, No. 5, September-October, 2005, pp. 832-844. https://doi.org/10.2514/1.9741
  5. J. P. Holman, Heat Transfer, Mcgraw-Hill, Inc., 1981.
  6. C. C. Poteet, "Preliminary Thermal􍾢Mechanical Sizing of a Metallic Thermal Protection System," Journal of Spacecraft and Rockets, Vol. 41, No. 2, 2004, pp. 173-182. https://doi.org/10.2514/1.9174
  7. N. R. Draper and H. Smith, Applied Regression Analysis, 3rd Ed., John Wiley.