DOI QR코드

DOI QR Code

막힘여과 모델에 의한 단백질 용액의 막여과에서 자연대류 불안정 흐름의 막오염 제어 효과 해석

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Protein Solution Using Blocking Filtration Model

  • 김예지 (충북대학교 공과대학 공업화학과) ;
  • 염경호 (충북대학교 공과대학 공업화학과)
  • Kim, Ye-Ji (Department of Engineering Chemistry, Chungbuk National University) ;
  • Youm, Kyung-Ho (Department of Engineering Chemistry, Chungbuk National University)
  • 투고 : 2019.01.05
  • 심사 : 2019.01.28
  • 발행 : 2019.02.28

초록

BSA 용액의 전량 한외여과에서 막모듈의 중력에 대한 경사각($0{\sim}180^{\circ}$) 변화에 따라 유발된 자연대류 불안정 흐름(natural convection instability flow; NCIF)의 막오염 제어 효과를 플럭스 증가 정도로 측정하고 막힘여과 모델로 해석하였다. 막모듈의 경사각이 $0^{\circ}$에서 $180^{\circ}$로 커질수록 NCIF 유발이 증가하여 막오염 제어 효과가 커져 플럭스가 증가하였다. NCIF의 유발이 가장 큰 경사각 $180^{\circ}$에서의 플럭스 값을 NCIF의 유발이 없는 $0^{\circ}$에서의 값과 비교한 결과, 2시간의 단기간 운전에서는 플럭스 향상성이 5배, 20시간의 장기간 운전에서는 17배까지 증가하였다. 막힘여과 모델을 적용하여 NCIF의 유발에 따른 플럭스 증가 효과를 해석한 결과, 운전시간 15분 이내에서는 중간막힘 모델 그 이후에는 케이크여과 모델로 해석하는 것이 타당하였다. 막모듈 경사각 $180^{\circ}$에서 유발된 NCIF는 15분 이내의 운전 초기에는 중간막힘 오염을 67%까지 감소시키고, 그 이후의 운전 시간에서는 케이크층 오염을 99.9%까지 감소시켰다. 따라서 막모듈에 유발된 NCIF의 주된 막오염 제어 기작은 케이크층 형성을 억제시키는 것이었다.

The dead-end ultrafiltration (UF) of BSA protein solution was performed to investigate the defouling effects of natural convection instability flow (NCIF) induced in membrane module. The permeate fluxes were measured according to the inclined angles ($0{\sim}180^{\circ}$) of membrane module with respect to gravity, and analyzed using the blocking filtration model. NCIF are more induced as the inclined angles increased from $0^{\circ}$ to $180^{\circ}$, and the induced NCIF enhances flux. Comparing the fluxes at $0^{\circ}$ inclined angle (no NCIF induction) and $180^{\circ}$ (maximum NCIF induction), the flux enhancements by NCIF induction are increased about 5 times in the short-term UF operation (2 hours) and about 17 times in the long-term operation (20 hours). As applying the blocking filtration model, it is more suitable to analyze the flux results by using the intermediate blocking model in the early times of UF operation within 15 minutes and then thereafter times by using the cake filtration model. NCIF induced at $180^{\circ}$ inclined angle reduces the intermediate blocking fouling at about 67% in the early times operation and thereafter the cake layer fouling at about 99.9%. The main defouling mechanism of NCIF induced in the membrane module is suppress the formation of protein cake layer.

키워드

참고문헌

  1. S. Loeb and S. Sourirajan, "Sea water demineralization by means of an osmotic membrane", Adv. Chem. Ser., 38, 117 (1963). https://doi.org/10.1021/ba-1963-0038.ch009
  2. K. H. Youm, H. Y. Lee, and Y. C. Shin, "Water treatment using separation membranes", pp. 25-30, p. 83, Sin-A Publishing, Jeju, Korea (2011).
  3. W. Guo, H. H. Ngo, and J. Li, "A mini-review on membrane fouling", Bioresource Technol., 122, 27 (2012). https://doi.org/10.1016/j.biortech.2012.04.089
  4. P. H. Hermans and H. L. Bredee, "Principles of the mathematical treatment of constant-pressure filtration", J. Soc. Chem. Ind., 55T, 1 (1936).
  5. H. P. Grace, "Structure and performance of filter media", AIChE J., 2, 316 (1956). https://doi.org/10.1002/aic.690020308
  6. J. Hermia, "Constant pressure blocking filtration laws - application to power-law non-newtonian fluids", Trans. Inst. Chem. Eng., 60, 183 (1982).
  7. C. Williams and R. Wakeman, "Membrane fouling and alternative techniques for its alleviation", J. Memb. Sci. Technol., 2000, 4 (2000).
  8. H. B. Winzeler and G. Belfort, "Enhanced performance for pressure-driven membrane processes: The argument for fluid instabilities", J. Memb. Sci., 80, 35 (1993). https://doi.org/10.1016/0376-7388(93)85130-O
  9. K. Y. Chung and G. Belfort, "Performance test for membrane module using Dean vortices", Membrane J., 2, 104 (1992).
  10. T. J. Hendricks, J. F. Macquin, and F. A. Williams, "Observation on buoyant convection in reverse osmosis", Ind. Eng. Chem., Process Des. Dev., 14, 166 (1975). https://doi.org/10.1021/i260054a012
  11. K. H. Youm, A. G. Fane, and D. E. Wiley, "Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration", J. Memb. Sci., 116, 229 (1996). https://doi.org/10.1016/0376-7388(96)00047-6
  12. Y. J. Cho and K. H. Youm, "Improvement of membrane performance by natural convection instability flow in ultrafiltration of colloidal solutions", Memb. J., 21, 84 (2011).
  13. A. R. Jang, S. W. Nam, and K. H. Youm, "Effect of natural convection instability on reduction of fouling and increasing of critical flux in constant-flow ultrafiltration", Memb. J., 22, 332 (2012).
  14. M. Hlavacek and F. Bouchet, "Constant flow rate blocking laws and an example of their application to dead-end microfiltration of protein solutions", J. Memb. Sci., 82, 285 (1993). https://doi.org/10.1016/0376-7388(93)85193-Z
  15. E. Iritani, "A review on modeling of pore-blocking behaviors of membranes during pressurized membrane filtration", Drying Technol., 31, 146 (2013). https://doi.org/10.1080/07373937.2012.683123
  16. K. Y. Chung, J. J. Kim, K. J. Kim, and A. G. Fane, "Microfiltration characteristics for emulsified oil in water", Memb. J., 8, 203 (1998).
  17. R. Sondhi, Y. S. Lin, and F. Alvarez, "Crossflow filtration of chromium hydroxide suspension by ceramic membranes: Fouling and its minimization by backpulsing", J. Memb. Sci., 174, 111 (2000). https://doi.org/10.1016/S0376-7388(00)00384-7
  18. C. C. Ho and A. L. Zydney, "A combined pore blocking and cake filtration model for protein fouling during microfiltration", J. Colloid Interface Sci., 232, 389 (2000). https://doi.org/10.1006/jcis.2000.7231
  19. K. J. Hwang, C. Y. Liao, and K. L. Tung, "Analysis of particle fouling during microfiltration by use of blocking models", J. Memb. Sci., 287, 287 (2007). https://doi.org/10.1016/j.memsci.2006.11.004
  20. S. Mondal and S. De, "A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation", Sep. Purif. Technol., 75, 222 (2010). https://doi.org/10.1016/j.seppur.2010.07.016
  21. A. R. Jang, "Effect of natural convection instability flow on membrane fouling control in ultrafiltration of BSA-silica particle mixture solutions", A thesis for the degree of Master, Chungbuk National University, Cheongju, Korea (February 2012).
  22. A. Charfi, H. Jang, and J. Kim, "Hydraulic cleaning effect on fouling mechanisms in pressurized membrane water treatment", Memb. J., 27, 517 (2017).
  23. K. H. Youm, "Flux enhancement by natural convection instability in ultrafiltration of BSA solution", International J. of Research Institute of Ind. Sci. Tech., 1, 27 (2002).