DOI QR코드

DOI QR Code

A Study on the CO2 Methanation in Power to Gas (P2G) over Ni-Catalysts

Ni 촉매 상에서 Power to Gas (P2G) 기술의 CO2 메탄화 반응에 관한 연구

  • YEOM, GYUIN (Department of Environment-Energy Engineering, The University of Suwon) ;
  • SEO, MYUNGWON (Korea Institute of Energy Research) ;
  • BAEK, YOUNGSOON (Department of Environment-Energy Engineering, The University of Suwon)
  • 염규인 (수원대학교 환경에너지공학과) ;
  • 서명원 (한국에너지기술연구원) ;
  • 백영순 (수원대학교 환경에너지공학과)
  • Received : 2019.01.27
  • Accepted : 2019.02.28
  • Published : 2019.02.28

Abstract

The power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technologies produces hydrogen by decomposing water from renewable energy (electricity) and the other produces $CH_4$ by reacting hydrogen with $CO_2$. The objective of this study is the reaction of $CO_2$ methanation which synthesized methane by reacting carbon dioxide and hydrogen. The effect of $CO_2$ conversion and $CH_4$ selectivity on reaction temperature, pressure, and methane contents over 40% Ni catalyst was mainly investigated throughout this study. As a result, the activity of this catalyst appeared to be the highest in $CH_4$ yield at around $400^{\circ}C$ and the selectivity of $CH_4$ increased with increasing reaction pressure. The methane content was not significantly influenced below 3% of all componets. As the space velocity increases from 10,000 to 30,000/hr, the $CO_2$ conversion rate tends to decrease.

Keywords

SSONB2_2019_v30n1_14_f0001.png 이미지

Fig. 1. Block diagram for production process of Ni-catalyst for CO2 methanation

SSONB2_2019_v30n1_14_f0002.png 이미지

Fig. 2. Experimental apparatus for CO2 methanation

SSONB2_2019_v30n1_14_f0003.png 이미지

Fig. 3. XRD pattern of Ni-Mg-Al catalyst with Ni amount

SSONB2_2019_v30n1_14_f0004.png 이미지

Fig. 4. H2-TPR pattern of Ni-Mg-Al catalyst with Ni amount

SSONB2_2019_v30n1_14_f0005.png 이미지

Fig. 5. Effect of reaction temperature on CO2 conversion and CH4 selectivity over 40% Ni-catalyst

SSONB2_2019_v30n1_14_f0006.png 이미지

Fig. 6. Effect of methane on CO2 conversion and CH4 selectivity over 40% Ni-catalyst at 400℃

SSONB2_2019_v30n1_14_f0007.png 이미지

Fig. 7. Effect of pressure on CO2 conversion and CH4 selectivity over 40% Ni-catalyst at 400℃

SSONB2_2019_v30n1_14_f0008.png 이미지

Fig. 8. Effect of GHSV on CO2 conversion and CH4 selectivity at 400℃

Table 1. Reaction conditions for CO2 methanation

SSONB2_2019_v30n1_14_t0001.png 이미지

Table 2. Specific surface area and pore volume with loading Nickel amount before reduction

SSONB2_2019_v30n1_14_t0002.png 이미지

References

  1. S. H. Lee, "The Role of Hydrogen Energy for Renewable Energy 3020", KDB Research, Vol. 749, 2018.
  2. K. H. Ko, "Power to Gas Technology Overview and Status", Hello T, Korea, 2015.
  3. S. K. Woo, J. H. Yoo, and S. B. Moon, "Hydrogen production by water electrolysis", New & Information for Chemical Engineers, Vol. 27, No. 4, 2009, pp. 429-433. Retrieved from http://www.kiche.or.kr/sub04/sub01_04.htm?seq=725422&start=0&number=15&vol=27&num=4&totalcount=29.
  4. P. Sabatier and J. B. Senderens, "Direct Hydrogenation of Oxides of Carbon in Presence of Various Finely Divided Metals", C. R. Acad. Sci., Vol. 134, 1902, pp. 689-691.
  5. G. D. Weatherbee and C. H. Bartholomew, "Hydrogenation of CO2 on group VIII metals : IV. Specific activities and selectivities of silica-supported Co, Fe and Ru", J. Catal., Vol. 87, No. 2, 1984, pp. 352-362, doi: https://doi.org/10.1016/0021-9517(84)90196-9.
  6. G. A. Mills and F. W. Steffgen, "Catalytic Methanation", Catalysis Reviews, Vol. 8, No. 1, 1974, pp. 159-210, doi: https://doi.org/10.1080/01614947408071860.
  7. M. Yamasaki, H. Habazaki, T. Yoshida, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, M. Komori, and K. Shimamura, "Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors", Appl. Catal. A: Gen., Vol. 163, No. 1-2, 1997, pp. 187-197, doi: https://doi.org/10.1016/S0926-860X(97)00142-7.
  8. S. Sharma, Z. Hu, P. Zhang, E. W. McFarland, and H. Metiu, "$CO_2$ methanation on Ru-dopped ceria", J. Catal., Vol. 278, No. 2, 2011, pp. 297-309, doi: https://doi.org/10.1016/j.jcat.2010.12.015.
  9. T. Kai, T. Takahashi, and S. Furusaki, "Kinetics of the methanation of carbon dioxide over a supported Ni-$La_2O_3$-Catalyst", Can. J. Chem. Eng., Vol. 66, No. 2, 1988, pp. 343-347, doi: https://doi.org/10.1002/cjce.5450660226.
  10. A. Zhao, W. Ying, H. Zhang, H. Ma, and D. Fang, "Ni-$Al_2O_3$ catalysts prepared by solution combustion method for syngas methanation", Catalysis Communications, Vol. 17, 2012, pp. 34-38, doi: https://doi.org/10.1016/j.catcom.2011.10.010.
  11. H. Liu, X. Zou, X. Wang, X. Lu, and W. Ding, "Effect of $CeO_2$ addition on Ni/Al2O3 catalysts for methnanation of carbon dioxide with hydrogen", Journal of Natural Gas Chemistry, Vol. 21, No. 6, 2012, pp. 703-707, doi: https://doi.org/10.1016/S1003-9953(11)60422-2.
  12. S. Rahmani, M. Rezaei, and F. Meshkani, "Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline ${\gamma}-Al_2O_3$ for $CO_2$ methanation", Journal of Industrial and Engineering Chemistry, Vol. 20, No. 4, 2014, pp. 1346-1352, doi: https://doi.org/10.1016/j.jiec.2013.07.017.
  13. D. J. Goodman, "Methanation of Carbon Dioxide", UCLA, USA, 2013. Retrieved from https://escholarship.org/uc/item/3nd6n502.
  14. L. Jugensen, E. A. Ehimen, J. Born, and J. B. Hole-Nielsen, "Dynamic biogas upgrading based on the sabatier process: thermodynamic and dynamic process simulation", Bioresource Technol., Vol. 178, 2015, pp. 323-239, doi: https://doi.org/10.1016/j.biortech.2014.10.069.
  15. K. Stangeland, D. Kalai, H. Ki, and Z. Yu, "The effect of temperature and initial methane concentration on carbon dioxide methanation on Ni based catalysts", Energy Procedia, Vol. 105, 2017, pp. 2016-2021, doi: https://doi.org/10.1016/j.egypro.2017.03.576.
  16. Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, and F. Su, "A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas", RSC Advance, Vol. 2, 2012, doi: http://dx.doi.org/10.1039/c2ra00632d.
  17. F. Ocampo, B. Louis, A. Kiennemann, and A. C. Roger, "CO2 Methanation over Ni-Ceria-Zirconia catalysts: effect of preparation and operating condition", Material Sience and Engineering, Vol. 19, 2011, p. 012007, doi: http://dx.doi.org/10.1088/1757-899x/19/1/012007.