DOI QR코드

DOI QR Code

Forecasting daily peak load by time series model with temperature and special days effect

기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구

  • Lee, Jin Young (Department of Applied Statistics, Chung-Ang University) ;
  • Kim, Sahm (Department of Applied Statistics, Chung-Ang University)
  • 이진영 (중앙대학교 응용통계학과) ;
  • 김삼용 (중앙대학교 응용통계학과)
  • Received : 2019.01.10
  • Accepted : 2019.01.22
  • Published : 2019.02.28

Abstract

Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.

일별 최대전력 수요 예측은 국가의 전력 수급운영에 중요한 과제로서 과거부터 다양한 방법들이 끊임없이 연구되어 왔다. 일별 최대전력 수요를 정확히 예측함으로써 발전설비에 대한 일일 운용계획을 작성하고 효율적인 설비 운용을 통해 불필요한 에너지 자원의 소비를 감소하는데 기여할 수 있으며 여름 겨울철 냉난방수요로 인해 발생하는 전력소비 과다로 인한 전력예비율 감소 문제 등에 선제적으로 대비할 수 있는 장점을 가진다. 이러한 일별 최대전력수요 예측을 위하여 본 논문에서는 Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, NNETAR 모형에 평일, 주말, 특수일에 대한 효과와 온도에 대한 영향을 함께 고려하여 다음날의 일별 최대전력을 예측하는 모형을 연구하였다. 본 논문을 통한 모형들의 예측 성능 평가 결과 요일, 온도를 고려할 수 있는 Seasonal Reg-ARIMA 모형과 NNETAR 모형이 이를 고려할 수 없는 다른 시계열 모형보다 우수한 예측 성능을 나타내었고 그 중 인공신경망을 활용한 NNETAR 모형의 예측 성능이 가장 우수하였다.

Keywords

GCGHDE_2019_v32n1_161_f0001.png 이미지

Figure 2.1. Multi-layer neural network.

GCGHDE_2019_v32n1_161_f0002.png 이미지

Figure 3.1. Time series plot of daily peak load.

GCGHDE_2019_v32n1_161_f0003.png 이미지

Figure 3.2. Time series plot of daily peak load on March 2017.

GCGHDE_2019_v32n1_161_f0004.png 이미지

Figure 3.3. Daily peak load forecast of ARIMA.

GCGHDE_2019_v32n1_161_f0005.png 이미지

Figure 3.4. Daily peak load forecast of ARIMAX.

GCGHDE_2019_v32n1_161_f0006.png 이미지

Figure 3.5. Daily peak load forecast of TBATS.

GCGHDE_2019_v32n1_161_f0007.png 이미지

Figure 3.6. Daily peak load forecast of NNETAR.

Table 3.1. Parameter estimate of ARIMA

GCGHDE_2019_v32n1_161_t0001.png 이미지

Table 3.2. Parameter estimate of ARIMAX

GCGHDE_2019_v32n1_161_t0002.png 이미지

Table 3.3. Parameter estimate of TBATS

GCGHDE_2019_v32n1_161_t0003.png 이미지

Table 3.4. Forecast accuracy of models

GCGHDE_2019_v32n1_161_t0004.png 이미지

References

  1. Amjady, N. (2001). Short-term hourly load forecasting using time-series modeling with peak load estimation capability, IEEE Transactions on Power Systems, 16, 498-505. https://doi.org/10.1109/59.932287
  2. Baek, J. K. and Han, J. H. (2015). A study on calibrating the forecasted load of electric power considering special day factor, Journal of Industrial Economics and Business, 28, 191-203.
  3. Bell, W. R. and Hillmer, S. C. (1983). Modeling time series with calendar variation, Journal of the American statistical Association, 78, 526-534. https://doi.org/10.1080/01621459.1983.10478005
  4. Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed), John Wiley & Sons, New York.
  5. De Livera, A. M., Hyndman, R. J., and Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106, 1513-1527. https://doi.org/10.1198/jasa.2011.tm09771
  6. Fan, S. and Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model, IEEE Transactions on Power Systems, 27, 134-141. https://doi.org/10.1109/TPWRS.2011.2162082
  7. Han, J. H. and Baek, J. K. (2010). The load forecasting in summer considering day factor, Journal of the Korea Academia-Industrial Cooperation Society, 11, 2793-2800. https://doi.org/10.5762/KAIS.2010.11.8.2793
  8. Hong, T., Gui, M., Baran, M. E., and Willis, H. L. (2010). Modeling and forecasting hourly electric load by multiple linear regression with interactions, In Power and Energy Society General Meeting, 2010 IEEE, 1-8.
  9. Huang, S. J. and Shih, K. R. (2003). Short-term load forecasting via ARMA model identification including non-Gaussian process considerations, IEEE Transactions on Power Systems, 18, 673-679. https://doi.org/10.1109/TPWRS.2003.811010
  10. Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., and Yasmeen, F. (2018). forecast: Forecasting functions for time series and linear models . R package version 8.4. http://pkg.robjhyndman.com/forecast
  11. Ji, P. S., Kim, S. K., and Lim, J. Y. (2013). Development of daily peak power demand forecasting algorithm using ELM, The Transactions of the Korean Institute of Electrical Engineers P, 62, 169-174. https://doi.org/10.5370/KIEEP.2013.62.4.169
  12. Jung, S. W. and Kim, S. (2014). Electricity demand forecasting for daily peak load with seasonality and temperature effects, The Korean Journal of Applied Statistics, 27, 843-853. https://doi.org/10.5351/KJAS.2014.27.5.843
  13. Lee, J. S., Sohn, H. G., and Kim, S. (2013). Daily peak load forecasting for electricity demand by time series models, The Korean Journal of Applied Statistics, 26, 349-360. https://doi.org/10.5351/KJAS.2013.26.2.349
  14. Sigauke, C. and Chikobvu, D. (2011). Prediction of daily peak electricity demand in South Africa using volatility forecasting models, Energy Economics, 33, 882-888. https://doi.org/10.1016/j.eneco.2011.02.013
  15. Sohn, H., Jung, S., and Kim, S. (2016). A study on electricity demand forecasting based on time series clustering in smart grid, The Korean Journal of Applied Statistics, 29, 190-203.
  16. Song, K. B., Kwon, O. S., and Park, J. D. (2013). Optimal coefficient selection of exponential smoothing model in short term load forecasting on weekdays, The Transactions of the Korean Institute of Electrical Engineers, 62, 149-154. https://doi.org/10.5370/KIEE.2013.62.2.149
  17. Tak, H., Kim, T., Cho, H. G., and Kim, H. (2016). A new prediction model for power consumption with local weather information, Journal of the Korea Contents Association, 16, 488-498.
  18. Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting, European Journal of Operational Research, 204, 139-152. https://doi.org/10.1016/j.ejor.2009.10.003
  19. Taylor, J. W., De Menezes, L. M., and McSharry, P. E. (2006). A comparison of univariate methods for forecasting electricity demand up to a day ahead, International Journal of Forecasting, 22, 1-16. https://doi.org/10.1016/j.ijforecast.2005.06.006