DOI QR코드

DOI QR Code

Development and Evaluation of Portable Multiple Gas Meter

휴대용 다중 가스측정 장비 개발 및 평가

  • 장희중 (LG전자 L&A연구센터) ;
  • 김응식 (호서대학교 안전소방학부) ;
  • 박종열 (호서대학교 안전환경기술융합대학원)
  • Received : 2018.11.09
  • Accepted : 2019.03.08
  • Published : 2019.03.31

Abstract

Assessing the effect of forest fires and measuring the gas concentration around a fire has received little attention. Therefore, the concentrations of various gases in areas surrounding a fire need to be measured by the development of a suitable device. Unlike conventional portable devices, the AQS (Air Quality System) proposed in this paper is a portable instrument that measures five types of gases simultaneously, including CO, CO2, NOx, VOCs, and NH3, and has high durability through sensor protection algorithms. A PC-based program with an AQS connection was developed to monitor the real-time changes in the gas concentration. The reliability of the developed device was proven through a comparison of the results with other commercial gas analyzers. Measurements of the concentration due to indoor and outdoor fires were performed around a fire area to review the applicability and the predicted results were obtained.

화재 발생으로 인한 피해 및 영향에 관해 국내에서의 연구는 미비한 상태이다. 따라서 화재 발생에 따른 연기 농도를 측정하기 위한 기기를 개발함으로 연기가 주변 지역으로 확산될 경우의 농도를 측정하고자 한다. 본 논문에서 제안한 공기질 측정 시스템은 기존의 측정기와는 달리 CO, CO2, NOx VOCs, NH3 등 총 5가지의 가스를 동시에 측정할 수 있고, 센서보호 알고리즘을 통해 높은 내구 수명을 갖는다. 또한, 모니터링 프로그램을 통해 실시간 가스 변화량을 측정하는 시스템을 구성하였다. 상용 가스 분석기와의 비교를 통해 가스농도 측정의 신뢰성을 확보하였으며, 실내 및 실외 화재실험을 통해 발화점 주변에 존재하는 가스농도 평가를 실시하여 신뢰성이 높은 데이터를 얻을 수 있음을 확인하였다.

Keywords

SHGSCZ_2019_v20n3_483_f0001.png 이미지

Fig. 1. Air quality system schematic

SHGSCZ_2019_v20n3_483_f0002.png 이미지

Fig. 2. Air quality system artwork (Up-Front, Down-Back)

SHGSCZ_2019_v20n3_483_f0003.png 이미지

Fig. 3. Air quaility system schematic(Power part)

SHGSCZ_2019_v20n3_483_f0004.png 이미지

Fig. 4. Sensor schematic(CO&NOx, NH3 Part)

SHGSCZ_2019_v20n3_483_f0005.png 이미지

Fig. 5. Sensor schematic(CO2 Part)

SHGSCZ_2019_v20n3_483_f0006.png 이미지

Fig. 6. Sensor schematic(VOCs Part)

SHGSCZ_2019_v20n3_483_f0007.png 이미지

Fig. 7. Air quality system proto sample ass’y

SHGSCZ_2019_v20n3_483_f0008.png 이미지

Fig. 8. AQS in gas measurement chamber

SHGSCZ_2019_v20n3_483_f0009.png 이미지

Fig. 9. Environment of gas measurement system

SHGSCZ_2019_v20n3_483_f0010.png 이미지

Fig. 10. Dry and wet fuel(leaves, etc.)

SHGSCZ_2019_v20n3_483_f0011.png 이미지

Fig. 11. Indoor gas measurement

SHGSCZ_2019_v20n3_483_f0012.png 이미지

Fig. 12. Indoor gas measurement data

SHGSCZ_2019_v20n3_483_f0013.png 이미지

Fig. 13. Installation of AQS on the vehicle

SHGSCZ_2019_v20n3_483_f0014.png 이미지

Fig. 14. Smoke difference before and after a fire

SHGSCZ_2019_v20n3_483_f0015.png 이미지

Fig. 15. Outdoor gas measurement data

SHGSCZ_2019_v20n3_483_f0016.png 이미지

Fig. 16. Spiral driving for gas assessment

SHGSCZ_2019_v20n3_483_f0017.png 이미지

Fig. 17. Results of spiral driving test

Table 1. Various gas sensor for measurement.

SHGSCZ_2019_v20n3_483_t0001.png 이미지

References

  1. B. M. Wotton, D. L. Martell, K A. Logan "Climate Change and People-Caused Forest Fire Occurrence in Ontario", Climatic Change, Vol.60, Issue.3, pp.275- 295, October, 2003. DOI: https://doi.org/10.1023/A:1026075919710
  2. B. J. Stocks, M. A. Fosberg, T. J. Lynham, L. Mearns, B. M. Wotton, Q. Yang, J-Z. Jin, K. Lawrence, G. R. Hartley, J. A. Mason, D. W. McKENNEY, "Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests", Climatic Change, Vol.38, Issue.1, pp.1-13, January, 1998. DOI: https://doi.org/10.1023/A:1005306001055
  3. G. Wotawa1, M. Trainer, "The Influence of Canadian Forest Fires on Pollutant Concentrations in the United States", American Association for the Advancement of Science, Vol.288, No.5464, pp.324-328, April, 2000. DOI: 10.1126/science.288.5464.324
  4. R. G. Gann, V. Babrauskas, R. D. Peacock, J. R. Hall Jr, "Fire conditions for smoke toxicity measurement", Fire and Materials, Vol.18, No. 3, pp. 193-199, June, 1994. DOI: https://doi.org/10.1002/fam.810180306
  5. W. R. Cofer III, E. L. Winstead, B. J. Stocks, J. G. Goldammer, D. R. Cahoon, "Crown fire emissions of CO2, CO, H2, CH4, and TNMHC from a dense Jack pine boreal forest fire", Geophysical Research Letters, Vol.25, No.21, pp. 3919-3922, November, 1998. https://doi.org/10.1029/1998GL900042
  6. D. Gutmacher, C. Foelmlib, W. Vollenweiderb, U. Hoeferb, J. Wollensteina, "Comparison of gas sensor technologies for fire gas detection", Procedia Engineering, Vol.25, pp.1121-1124, January, 2012. DOI: https://doi.org/10.1016/j.proeng.2011.12.276
  7. D. Gutmacher, U. Hoefer, J. Wollenstein, "Gas sensor technologies for fire detection", Sensors and Actuators B: Chemical, Vol.175, pp.40-45, December, 2012. DOI: https://doi.org/10.1016/j.snb.2011.11.053
  8. J. Kesselmeier, U. Kuhn, S. Rottenberger, T. Biesenthal, A. Wolf,1 G. Schebeske, M. O. Andreae, P. Ciccioli, E. Brancaleoni, M. Frattoni, S. T. Oliva, M. L. Botelho, C. M. A. Silva, and T. M. Tavares, "Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondonia", Journal of Geophysical and Research, Vol.107, Issue.D20, pp. LBA 20-1-LBA 20-13, September, 2002. DOI: https://doi.org/10.1029/2000JD000267
  9. E. S. Kim, D. H. Kim, J. H. Kim "A Study on the Characteristics of Combustion according to the Type of Forest Fire", Fire Research Report, pp.185-229, 2010. DOI: https://doi.org/10.7467/KSAE.2012.20.1.068