DOI QR코드

DOI QR Code

Anti-proliferation, Cell Cycle Arrest, and Apoptosis Induced by Natural Liquiritigenin from Licorice Root in Oral Squamous Cell Carcinoma Cells

구강편평세포암종 세포에서 감초 유래 Liquiritigenin의 항증식, 세포주기 정지 및 세포사멸 유도

  • Kwak, Ah-Won (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Yoon, Goo (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Chae, Jung-Il (Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Chonbuk National University) ;
  • Shim, Jung-Hyun (Department of Pharmacy, College of Pharmacy, Mokpo National University)
  • 곽아원 (목포대학교 약학대학) ;
  • 윤구 (목포대학교 약학대학) ;
  • 채정일 (전북대학교 치과대학) ;
  • 심정현 (목포대학교 약학대학)
  • Received : 2018.11.08
  • Accepted : 2019.02.12
  • Published : 2019.03.30

Abstract

Liquiritigenin (LG) is a chiral flavonoid isolated from the roots of licorice. It exhibits multiple biological activities including anti-oxidant, anti-cancer, and anti-inflammatory effects. In particular though, the anti-cancer activity of LG in oral squamous cell carcinoma has yet to be elucidated, and LG-induced apoptosis in oral squamous cell carcinoma remains poorly understood. In the present study, we tested the role of LG in inducing apoptosis in oral squamous cell carcinoma cells. LG treatment of HN22 cells resulted in a dose-dependent inhibition of cell viability as detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. The induction of apoptosis in terms of Annexin V/7-Aminoactinomycin D staining, sub-G1 population, and multi-caspase activity were assessed with a $Muse^{TM}$ Cell Analyzer. Flow cytometric analysis revealed that LG treatment resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and CDC2 expression in a concentration-dependent manner. It also resulted in significant upregulation of p27. In addition, LG was seen to trigger the generation of reactive oxygen species and induce CCAAT/enhancer-binding protein homologous protein and 78-kDa glucose-regulated protein in concentration-dependent upregulation. The LG treatment of HN22 cells led to a loss of mitochondrial membrane potential (${\Delta}{\Psi}m$); it also reduced the levels of anti-apoptotic protein and increased the expression of apoptotic protease activating factor-1, cleaved poly (ADP-ribose)polymerase and Bax. Overall, our results indicate that the pro-apoptotic effects of LG in HN22 cells depend on the activation of both intrinsic and extrinsic signaling pathways. Thus, our results suggest that LG constitutes a natural compound with a potential role as an anti-tumor agent in oral squamous cell carcinoma.

Liquiritigenin (LG)은 licorice 뿌리에서 분리된 chiral flavonoid이다. LG는 항산화, 항암 및 항염증 효과를 포함하여 다양한 생물학적 활성을 가지고 있다. 구강편평세포암종에서 LG의 항암 활성은 아직 밝혀지지 않았다. 본 연구에서는 구강편평상피암 세포(HN22)에서 LG의 항암 효능을 시험하였다. HN22 세포에 LG를 처리하여 MTT 분석으로 세포 생존율을 평가하였으며, Annecin V/7-Aminactinomycin D 염색, 세포주기 및 Multi-caspase 활성을 $Muse^{TM}$ cell Analyzer로 분석하여 세포사멸 유도를 확인하였다. 분석결과, 구강편평상피암 HN22 세포에 LG를 처리시 G2/M 세포주기 정지를 일으켰으며, Western blotting 통하여 cyclin B1 및 CDC2 발현 감소와 p27 발현 증가를 확인하였다. LG는 활성산소종의 생성을 유발하고, CCAAT/enhancer-binding protein homologous protein (CHOP) 및 78-kDa glucose regulated protein (GRP78)의 발현을 농도의존적으로 유도하였다. HN22 세포에 LG의 처리는 미토콘드리아 막전위의 손실(${\Delta}{\Psi}m$)을 일으켰다. LG를 처리한 HN22 세포의 단백질 분석결과 apoptotic protease activating factor-1 (Apaf-1), cleaved Poly (ADP-Ribose) Polymerase (C-PARP) 및 Bax의 발현을 증가함을 확인하였다. 따라서 우리의 결과는 LG이 구강편평상피암 세포의 세포사멸을 유도하여 항암제 역할을 할 수 있는 천연 화합물임을 시사한다.

Keywords

SMGHBM_2019_v29n3_295_f0001.png 이미지

Fig. 1. Effects of LG on the cell viability and apoptosis in human oral squamous carcinoma HN22 cells.

SMGHBM_2019_v29n3_295_f0002.png 이미지

Fig. 2. Effects of LG on cell cycle distribution and cell cycle regulation protein expression in HN22 cells.

SMGHBM_2019_v29n3_295_f0003.png 이미지

Fig. 3. Generation of ROS and defect of MMP by LG treatment in HN22 cells.

SMGHBM_2019_v29n3_295_f0004.png 이미지

Fig. 4. Effects of LG on protein expression and multi-caspases activation related to apoptosis.

References

  1. Alrushaid, S., Davies, N. M., Martinez, S. E. and Sayre, C. L. 2016. Pharmacological characterization of Liquiritigenin, a chiral flavonoid in licorice. Res. Pharm. Sci. 11, 355-365. https://doi.org/10.4103/1735-5362.192484
  2. Ariyasu, D., Yoshida, H. and Hasegawa, Y. 2017. Endoplasmic Reticulum (ER) stress and endocrine disorders. Int. J. Mol. Sci. 18.
  3. Belmokhtar, C. A., Hillion, J. and Segal-Bendirdjian, E. 2001. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20, 3354-3362. https://doi.org/10.1038/sj.onc.1204436
  4. Bundela, S., Sharma, A. and Bisen, P. S. 2014. Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70. PLoS One 9, e102610. https://doi.org/10.1371/journal.pone.0102610
  5. Chen, J. 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 6, a026104. https://doi.org/10.1101/cshperspect.a026104
  6. Degli Esposti, M. and Dive, C. 2003. Mitochondrial membrane permeabilisation by Bax/Bak. Biochem. Biophys. Res. Commun. 304, 455-461. https://doi.org/10.1016/S0006-291X(03)00617-X
  7. Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511. https://doi.org/10.1038/nchembio.607
  8. Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
  9. Fulda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811. https://doi.org/10.1038/sj.onc.1209608
  10. Ge, G., Yan, Y. and Cai, H. 2017. Ginsenoside Rh2 inhibited proliferation by inducing ROS Mediated ER stress dependent apoptosis in lung cancer cells. Biol. Pharm. Bull. 40, 2117-2124. https://doi.org/10.1248/bpb.b17-00463
  11. Green, D. R. and Kroemer, G. 2004. The pathophysiology of mitochondrial cell death. Science 305, 626-629. https://doi.org/10.1126/science.1099320
  12. Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y. and Sakuragi, N. 2014. Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845.
  13. Hata, A. N., Engelman, J. A. and Faber, A. C. 2015. The BCL2 Family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475-487. https://doi.org/10.1158/2159-8290.CD-15-0011
  14. Huang, C. H. and Chan, W. H. 2017. Protective effects of Liquiritigenin against citrinin-triggered, oxidative-stressmediated apoptosis and disruption of embryonic development in mouse blastocysts. Int. J. Mol. Sci. 18, pii:E2538.
  15. Kardeh, S., Ashkani-Esfahani, S. and Alizadeh, A. M. 2014. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur. J. Pharmacol. 735, 150-168. https://doi.org/10.1016/j.ejphar.2014.04.023
  16. Kishimoto, K., Yoshida, S., Ibaragi, S., Yoshioka, N., Hu, G. F. and Sasaki, A. 2014. Neamine inhibits oral cancer progression by suppressing angiogenin-mediated angiogenesis and cancer cell proliferation. Anticancer Res. 34, 2113-2121.
  17. Kumar, M., Nanavati, R., Modi, T. G. and Dobariya, C. 2016. Oral cancer: Etiology and risk factors: A review. J. Cancer Res. Ther. 12, 458-463. https://doi.org/10.4103/0973-1482.186696
  18. Lee, S. H., Meng, X. W., Flatten, K. S., Loegering, D. A. and Kaufmann, S. H. 2013. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 20, 64-76. https://doi.org/10.1038/cdd.2012.93
  19. Leibowitz, B. and Yu, J. 2010. Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol. Ther. 9, 417-422. https://doi.org/10.4161/cbt.9.6.11392
  20. Liu, C., Wang, Y., Xie, S., Zhou, Y., Ren, X., Li, X. and Cai, Y. 2011. Liquiritigenin induces mitochondria-mediated apoptosis via cytochrome c release and caspases activation in HeLa Cells. Phytother. Res. 25, 277-283. https://doi.org/10.1002/ptr.3259
  21. Liu, Y., Xie, S., Wang, Y., Luo, K., Wang, Y. and Cai, Y. 2012. Liquiritigenin inhibits tumor growth and vascularization in a mouse model of HeLa cells. Molecules 17, 7206-7216. https://doi.org/10.3390/molecules17067206
  22. Lu, W., Feng, F., Xu, J., Lu, X., Wang, S., Wang, L., Lu, H., Wei, M., Yang, G., Wang, L., Lu, Z., Liu, Y. and Lei, X. 2014. QKI impairs self-renewal and tumorigenicity of oral cancer cells via repression of SOX2. Cancer Biol. Ther. 15, 1174-1184. https://doi.org/10.4161/cbt.29502
  23. Ma, Y., Zhang, J., Zhang, Q., Chen, P., Song, J., Yu, S., Liu, H., Liu, F., Song, C., Yang, D. and Liu, J. 2014. Adenosine induces apoptosis in human liver cancer cells through ROS production and mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 448, 8-14. https://doi.org/10.1016/j.bbrc.2014.04.007
  24. Mersereau, J. E., Levy, N., Staub, R. E., Baggett, S., Zogovic, T., Chow, S., Ricke, W. A., Tagliaferri, M., Cohen, I., Bjeldanes, L. F. and Leitman, D. C. 2008. Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol. Cell Endocrinol. 283, 49-57. https://doi.org/10.1016/j.mce.2007.11.020
  25. Mills, C. C., Kolb, E. A. and Sampson, V. B. 2017. Recent Advances of Cell-Cycle Inhibitor Therapies for Pediatric Cancer. Cancer Res. 77, 6489-6498. https://doi.org/10.1158/0008-5472.CAN-17-2066
  26. Mishra, D., Singh, S. and Narayan, G. 2016. Curcumin induces apoptosis in Pre-B acute lymphoblastic Leukemia cell lines via PARP-1 cleavage. Asian Pac. J. Cancer Prev. 17, 3865-3869. https://doi.org/10.14456/apjcp.2016.184/APJCP.2016.17.8.3865
  27. Mukherjee, A. K., Basu, S., Sarkar, N. and Ghosh, A. C. 2001. Advances in cancer therapy with plant based natural products. Curr. Med. Chem. 8, 1467-1486. https://doi.org/10.2174/0929867013372094
  28. Oh, H., Yoon, G., Shin, J. C., Park, S. M., Cho, S. S., Cho, J. H., Lee, M. H., Liu, K., Cho, Y. S., Chae, J. I. and Shim, J. H. 2016. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int. J. Oncol. 48, 1749-1757. https://doi.org/10.3892/ijo.2016.3365
  29. Oh, H. N., Seo, J. H., Lee, M. H., Kim, C., Kim, E., Yoon, G., Cho, S. S., Cho, Y. S., Choi, H. W., Shim, J. H. and Chae, J. I. 2018. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J. Cell Biochem. 119, 10118-10130. https://doi.org/10.1002/jcb.27349
  30. Oh, H. N., Seo, J. H., Lee, M. H., Yoon, G., Cho, S. S., Liu, K., Choi, H., Oh, K. B., Cho, Y. S., Kim, H., Han, A. L., Chae, J. I. and Shim, J. H. 2018. Oridonin induces apoptosis in oral squamous cell carcinoma probably through the generation of reactive oxygen species and the p38/JNK MAPK pathway. Int. J. Oncol. 52, 1749-1759.
  31. Passante, E., Wurstle, M. L., Hellwig, C. T., Leverkus, M. and Rehm, M. 2013. Systems analysis of apoptosis protein expression allows the case-specific prediction of cell death responsiveness of melanoma cells. Cell Death Differ. 20, 1521-1531. https://doi.org/10.1038/cdd.2013.106
  32. Shimizu, S., Narita, M. and Tsujimoto, Y. 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487. https://doi.org/10.1038/20959
  33. Simon, H. U., Haj-Yehia, A. and Levi-Schaffer, F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418. https://doi.org/10.1023/A:1009616228304
  34. Singh, S. K., Banerjee, S., Acosta, E. P., Lillard, J. W. and Singh, R. 2017. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget 8, 17216-17228. https://doi.org/10.18632/oncotarget.15303
  35. Taylor, W. R. and Stark, G. R. 2001. Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815. https://doi.org/10.1038/sj.onc.1204252
  36. Vilen, S. T., Salo, T., Sorsa, T. and Nyberg, P. 2013. Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. ScientificWorldJournal 2013, 920595.
  37. Wang, D., Lu, J., Liu, Y., Meng, Q., Xie, J., Wang, Z. and Teng, L. 2014. Liquiritigenin induces tumor cell death through mitogen-activated protein kinase- (MPAKs-) mediated pathway in hepatocellular carcinoma cells. Biomed. Res. Int. 2014, 965316.
  38. Wang, D., Wong, H. K., Feng, Y. B. and Zhang, Z. J. 2014. Liquiritigenin exhibits antitumour action in pituitary adenoma cells via Ras/ERKs and ROS-dependent mitochondrial signalling pathways. J. Pharm. Pharmacol. 66, 408-417. https://doi.org/10.1111/jphp.12170
  39. Wong, R. S. 2011. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87. https://doi.org/10.1186/1756-9966-30-87
  40. Yuan, X., Li, T., Xiao, E., Zhao, H., Li, Y., Fu, S., Gan, L., Wang, Z., Zheng, Q. and Wang, Z. 2014. Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis. Food Chem. Toxicol. 65, 242-251. https://doi.org/10.1016/j.fct.2013.12.030
  41. Zheng, Y. Z., Cao, Z. G., Hu, X. and Shao, Z. M. 2014. The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res. Treat. 145, 349-358. https://doi.org/10.1007/s10549-014-2967-x
  42. Zhou, Y., Wang, K., Zhen, S., Wang, R. and Luo, W. 2016. Carfilzomib induces G2/M cell cycle arrest in human endometrial cancer cells via upregulation of p21 (Waf1/Cip1) and p27(Kip1). Taiwan J. Obstet. Gynecol. 55, 847-851. https://doi.org/10.1016/j.tjog.2016.09.003