DOI QR코드

DOI QR Code

Mesoporous Control Effect of Porous Carbon Nanofibers for Electrical Double-Layer Capacitors

전기 이중층 커패시터를 위한 다공성 탄소나노섬유의 메조 기공 제어 효과

  • Jo, Hyun-Gi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 조현기 (서울과학기술대학교 신소재공학과) ;
  • 신동요 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2018.12.30
  • Accepted : 2019.01.11
  • Published : 2019.03.27

Abstract

To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of $696m^2g^{-1}$, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of $110.1F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$ and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of $0.1A\;g^{-1}$. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.

Keywords

References

  1. H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald and R. S. Ruoff, Nat. Nanotechnol., 9, 618 (2014). https://doi.org/10.1038/nnano.2014.152
  2. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff1, Science, 332, 1537 (2011). https://doi.org/10.1126/science.1200770
  3. L. Wei and G. Yushin, Nano Energy, 1, 552 (2012). https://doi.org/10.1016/j.nanoen.2012.05.002
  4. H.-J. Ahn, J. I. Sohn, Y.-S. Kim, H-S. Shim, W. B. Kim and T.-Y. Seong, Electrochem. Commun., 8, 513 (2006). https://doi.org/10.1016/j.elecom.2006.01.018
  5. Y.-J. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 24, 37 (2014). https://doi.org/10.3740/MRSK.2014.24.1.37
  6. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 640 (2018). https://doi.org/10.3740/MRSK.2018.28.11.640
  7. D.-Y. Sin, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 25, 0 (2015).
  8. J. Duay, S. A. Sherrill, Z. Gui, E. Gillette and S. B. Lee, ACS Nano, 7, 1200 (2013). https://doi.org/10.1021/nn3056077
  9. Y.-G. Lee, G-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017). https://doi.org/10.3740/MRSK.2017.27.4.192
  10. G.-H. An and H.-J. Ahn, Carbon, 65, 87 (2013). https://doi.org/10.1016/j.carbon.2013.08.002
  11. G.-H. An, B-R. Koo and H.-J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016). https://doi.org/10.1039/C6CP00035E
  12. D.-Y. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 617 (2017). https://doi.org/10.3740/MRSK.2017.27.11.617
  13. M. J. B. Martinez, J. A. M. Agullo, D. L. Castello, E. Morallon, D. C. Amoros and A. L. Solano, Carbon, 43, 2677 (2005). https://doi.org/10.1016/j.carbon.2005.05.027
  14. D.-Y. Sin, I.-K. Park and H.-J. Ahn, RSC Adv., 6, 58823 (2016). https://doi.org/10.1039/C6RA06782D
  15. Q. Li, F. Liu, L. Zhang, B. J. Nelsonb, S. Zhang, C. Ma, X. Tao, J. Cheng and X. Zhang, J. Power Sources, 207, 199 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.142
  16. B.-H. Kim and K. S. Yang, J. Electroanal. Chem., 714, 92 (2014). https://doi.org/10.1016/j.jelechem.2013.12.019
  17. G.-H. An and H.-J. Ahn, ECS Solid State Lett., 2, M33 (2013). https://doi.org/10.1149/2.005305ssl