DOI QR코드

DOI QR Code

Design and Manufacture of Triple-Band Antennas with Modified Rectangular Ring and Rectangular Patch for WLAN/WiMAX system applications

변형된 사각 링과 사각 패치를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작

  • Kim, Woo-Su (Korea Evaluation Institute of Industrial Technology) ;
  • Yoon, Joong-Han (Division of Smart Electrical and Electronic Engineering, Silla University)
  • Received : 2018.11.10
  • Accepted : 2018.12.07
  • Published : 2019.03.31

Abstract

In this paper, a monopole type antenna applicable to WLAN and WiMAX standard frequency bands is designed and fabricated. The proposed antenna is designed to have rectangular ring and rectangular patch based on microstrip feeding for triple band characteristics and inserted two stub in the top of the rectangular ring patch to enhance impedance bandwidth characteristics. The proposed antenna has $18.0mm(2W_1+W_2){\times}33.0mm(L_7+L_8+L_9)$ on a dielectric substrate of $27.0mm(W_1){\times}44mm(L_1){\times}1.0mm$ size. From the fabrication and measurement results, impedance bandwidths of 660MHz (2,08 to 2.74GHz) for 2.4/2.5MHz band, 488MHz (3.40 to 3.88GHz) for 3.5MHz band, and 2,180MHz (4.61 to 6.79GHz) for 5,000MHz band were obtained based on the impedance bandwidth. The proposed antenna also obtained the measured gain and radiation pattern in the anechoic chamber.

본 논문에서는 WLAN(Wireeless Local Area Network)과 WiMAX(World Interoperability for Microwave Access) 표준화 주파수 대역에 적합하도록 모노폴 형태의 삼중대역 안테나를 설계 제작하였다. 마이크로스트립 급전방법을 채택하고 사각 링과 사각 패치의 결합 구조로 설계하였으며 임피던스 특성을 향상시키기 위해 사각 링 패치 상단에 두 개의 스터브 추가하여 향상된 삼중대역 특성을 얻었다. 제안된 안테나는 $29.0mm(W){\times}44.0mm(L){\times}1.0mm(t)$의 유전체 기판 위에 $18.0mm(2W_1+W_2){\times}33.0mm(L_7+L_8+L_9)$의 크기로 설계되었다. 제작 및 측정 결과로부터 2.4/2.5 GHz에서는 660MHz (2.08~2.74GHz), 3.5GHz 대역에서는 488.0MHz (3.40 ~ 3.88GHz), 그리고 5.0GHz 대역에서는 2,180MHz (4.61 ~ 6.79GHz)의 대역폭을 얻었다. 또한 무반사실의 측정결과로부터 제작된 안테나의 이득과 방사패턴 특성을 확인하였다.

Keywords

HOJBC0_2019_v23n3_341_f0001.png 이미지

Fig. 1 The structure of the proposed WLAN/WiMAX antenna

HOJBC0_2019_v23n3_341_f0002.png 이미지

Fig. 2 Return loss characteristic of the effect of the L8.

HOJBC0_2019_v23n3_341_f0003.png 이미지

Fig. 3 Return loss characteristic according to the with and without stub of the rectangular ring structure

HOJBC0_2019_v23n3_341_f0004.png 이미지

Fig. 4 Return loss characteristic according to the with and without slit in the ground.

HOJBC0_2019_v23n3_341_f0005.png 이미지

Fig. 5 Return loss characteristic according to the with and without rectangular patch

HOJBC0_2019_v23n3_341_f0006.png 이미지

Fig. 6 The surface current density of proposed antenna (a) 2.515 GHz, (b) 3.46 GHz, and (c) 5.155 GHz.

HOJBC0_2019_v23n3_341_f0007.png 이미지

Fig. 8 The simulated and measured return loss results

HOJBC0_2019_v23n3_341_f0008.png 이미지

Fig. 9 3D radiation pattern of 2.4 GHz

HOJBC0_2019_v23n3_341_f0009.png 이미지

Fig. 11 3D radiation pattern of 5.35 GHz

HOJBC0_2019_v23n3_341_f0010.png 이미지

Fig. 12 3D radiation pattern of 5.75 GHz

HOJBC0_2019_v23n3_341_f0011.png 이미지

Fig. 13 Measured peak gains of the designed antenna

HOJBC0_2019_v23n3_341_f0012.png 이미지

Fig. 10 3D radiation pattern of 3.6 GHz

Table. 1 Results of simulation : L8

HOJBC0_2019_v23n3_341_t0001.png 이미지

Table. 2 Results of simulation with/without stub

HOJBC0_2019_v23n3_341_t0002.png 이미지

Table. 3 Results of simulation with/without slit

HOJBC0_2019_v23n3_341_t0003.png 이미지

Table. 4 Results of simulation with/without rectangular patch

HOJBC0_2019_v23n3_341_t0004.png 이미지

Table. 5 Parameters of proposed antenna

HOJBC0_2019_v23n3_341_t0005.png 이미지

Fig. 7 Fabricated of propose antenna (a) Front view, (b) Back view.

HOJBC0_2019_v23n3_341_t0006.png 이미지

Table. 7 Results of measured gain

HOJBC0_2019_v23n3_341_t0007.png 이미지

References

  1. B. H. Jeong, S. H. Jang, S. L. Yoon, and D. H. Kim, "Development direction of WLAN technology treads to IEEE 802.11ax standardization," Electronics and Telecommunications Trends, vol. 27, no. 2, pp. 1-10, 2012.
  2. J. H. Son, U. J. An, J. J. Ko, and K. S. Kwak, "Recent tread to IEEE 802.11ax next-generation WLAN standardization," Electronics and Telecommunications Trends, vol. 31, no. 10, pp. 3-9, 2016.
  3. World Wide Interoperability for microwave access forum or WiMAX forum [Internet]. Available: http://www.wimaxfroum.org.
  4. Y. Han, Y. Z. Yin, Y. Q. Wei, Y. Zhao, B. Li, and X. N. Li, "A novel triple band monopole antenna with double coupled C-shaped strips for WiMAX/WLAN applications," Journal of Electromagnetic Waves and Applications, vol. 25, no. 8-9, pp. 1308-1316, Apr. 2012. https://doi.org/10.1163/156939311795762150
  5. Y. F. Wang, B. H. Sun, K. He, R. H. Li, and Y. J. Wang, "A compact tri-band antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, vol. 53, no. 10, pp. 2371-2375, Oct. 2011. https://doi.org/10.1002/mop.26254
  6. X. Li, W. Hu, Y. F. Wang, X. W. Shi, and X. T. Gu, "Printed triple band rectangular ring monopole antenna with symmetrical L strips for WLAN/WiMAX applications," Microwave and Optical Technology Letters, vol. 54, no. 4, pp. 1049-1052, Apr. 2012. https://doi.org/10.1002/mop.26733
  7. J. H. Yoon, Y. C. Rhee, and Y. K, Jang, "Compact monopole antenna design for WLAN/WiMAX triple-band operations," Microwave and Optical Technology Letters, vol. 54, no. 8, pp. 1838-1846, Aug. 2012. https://doi.org/10.1002/mop.26963
  8. J. H. Yoon, Y. C. Rhee, and W. S, Kim, " Rectangular Ring Open-Ended Monopole Antenna with Two Symmetric Strips for WLAN and WiMAX Applications," International Journal of Antennas and Propagation, vol. 2013, Article ID 109450 1-9.
  9. D. S. Kim,and J. H. Yoon, "esign and manufacture of modified circular ring antenna for WLAN/WiMAX applications," Journal of the Korea Institute of Information and Communication Engineering, vol. 18, no. 2, pp. 268-275, Feb. 2014. https://doi.org/10.6109/jkiice.2014.18.2.268
  10. J. H. Yoon, S. J. Ha, and T. C. Rhee, "novel monopole antenna with two arc-shaped strips for WLAN/WiMAX applications," Journal of Electromagnetic engineering and Science, vol. 15, no. 1, pp. 6-13, Jan. 2015. https://doi.org/10.5515/JKIEES.2015.15.1.6
  11. W. S. Kim and J. H. Yoon, "A design for a CPW-fed monopole antenna with two modified half circular rings for WLAN/WiMAX operations," Journal of Information and Communication Convergence Engineering, vol. 13, no. 3, pp. 159-166, Sep. 2015. https://doi.org/10.6109/jicce.2015.13.3.159
  12. L Li. X. Zhang, X. Yin, and L. Zhou, "A compact triple band printed monopole antenna for WLAN and WiMAX applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1853-1855, 2016. https://doi.org/10.1109/LAWP.2016.2539358
  13. A. K. Gautam, L. Kumar, B. K. Kanaujia, and K. Rambabu, "Design of compact F-shaped slot triple band antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1101-1105, Mar. 2016. https://doi.org/10.1109/TAP.2015.2513099
  14. M. M. Fakharian, and P. Rezaei, "Design of split ring antennas for WLAN and WiMAX applications," Microwave and Optics Technology Letters, vol. 58, no. 9, pp. 2117-2122, Sep. 2016. https://doi.org/10.1002/mop.29996
  15. M. A. Khaidi, "A highly compact multiband antenna of Bluetooth/WLAN, WiMAX, and WiFi applications," Microwave and Optics Technology Letters, vol. 59, no. 1, pp. 77-80, Jan. 2017. https://doi.org/10.1002/mop.30230
  16. M. O. Sallam, S. M. Kandil, V. Vlosik, G. A. E. Vandenboshch, and E. Soliman, "Wideband CPW-fed flexible bow tie slot antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4274-4277, Aug. 2017. https://doi.org/10.1109/TAP.2017.2710227
  17. B. Mohamadzade and A. Rezaee, "Compact and braodband dual sleeve monopole antenna for GSM, WLAN and WiMAX applications," Microwave and Optics Technology Letters, vol. 59, no. 6, pp. 4274-4277, June 2017.
  18. J. H. Yeo, and J. L. Lee, "Compact dual band half ring shpaed bent slot antenna for WLAN and WiMAX 348 applications," Journal of Information and Communication Convergence Engineering, vol. 15, no. 4, pp. 199-204, Dec. 2017. https://doi.org/10.6109/JICCE.2017.15.4.199
  19. T. Ali and R. C. Biradar, "A triple band highly miniaturized antenna for WLAN/WiMAX applications," Microwave and Optics Technology Letters, vol. 60, no. 1, pp. 466-471, Jan. 2018. https://doi.org/10.1002/mop.30993
  20. Ansoft High Frequency Structure Simulator (HFSS) Version 10.0, Ansoft Corporation, 2005.

Cited by

  1. 900 MHz 대역을 포함한 WLAN/WiMAX 시스템에 적용 가능한 4중대역 안테나 설계 및 제작 vol.23, pp.10, 2019, https://doi.org/10.6109/jkiice.2019.23.10.1240