DOI QR코드

DOI QR Code

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring

봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정

  • Kim, Jin-Hee (National Center for Agro-Meteorology, Seoul National University) ;
  • Kim, Dae-jun (National Center for Agro-Meteorology, Seoul National University) ;
  • Kim, Soo-ock (National Center for Agro-Meteorology, Seoul National University) ;
  • Yun, Eun-jeong (National Center for Agro-Meteorology, Seoul National University) ;
  • Ju, Okjung (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services) ;
  • Park, Jong Sun (R&D Center, EPINET Co. Ltd.) ;
  • Shin, Yong Soon (R&D Center, EPINET Co. Ltd.)
  • Received : 2018.12.03
  • Accepted : 2019.03.26
  • Published : 2019.03.30

Abstract

The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.

기후변화에 따른 이상난동 현상으로 과수 개화시기는 앞당겨지는 추세이며, 이에 따라 발아-개화기를 전후로 갑작스레 출현하는 저온에 의한 피해사례가 증가하고 있다. 특정 과원 내에서 동일한 저온이 발생하더라도 개별 과수의 현재 발육상태에 따라 저온에 견뎌내는 힘은 각각 다르므로 피해정도와 양상은 다르게 나타나는데, 기존 과수 꽃눈의 발육상태별 동사온도 기준만으로는 기온 공간변이가 큰 임의 지역의 저온해를 예상하기에는 한계가 있었다. 본 연구에서는 이러한 한계를 극복하고 조기 대응할 수 있도록 생육추정 모델을 이용해 과수의 생육 수준을 예측하여 봄철 기온 예보자료만으로 저온에 따른 위험수준을 정량적으로 평가할 수 있는 저온해 위험도 함수식을 도출하였다. 저온해 위험 추정식을 2018년을 대상으로 '후지' 사과, '장호원황도' 복숭아, '신고' 배에 적용하여 저온해 발생일과 위험분포의 지리적 양상을 주산지별로 분석한 결과, 4월 8일에 모든 과수에서 저온해가 가장 큰 것으로 나타났다. 대표 주산지로 보면 사과는 거창, 함양, 장수에서, 복숭아는 의성, 청도, 김천, 임실, 남원, 대구에서, 배는 김천, 천안, 아산, 논산, 울산, 경주, 진주 일대에서 피해가 많이 발생했을 것으로 예상되었다. 이 기술은 과수 재배농가의 봄철 저온 피해 경감 및 이상기후에 따른 대응기술 마련에 기여할 것으로 기대된다.

Keywords

NRGSBM_2019_v21n1_55_f0001.png 이미지

Fig. 1. A linear graph showing damage-inducing temperatures associated with bud burst, flowering, and post-flowering dates. These data were used to derive the actual risk index.

NRGSBM_2019_v21n1_55_f0002.png 이미지

Fig. 2. Bud burst dates distributions of ‘Fuji’ apple, ‘Changhowon’ peach, and ‘Niitaka’ pear over the South Korea in 2018. Geographical areas corresponding to bud burst dates on April 8 are marked with a red bold line and main production areas for each fruit are marked with black bold line.

NRGSBM_2019_v21n1_55_f0003.png 이미지

Fig. 3. Flowering dates distributions of ‘Fuji’ apple, ‘Changhowon’ peach, and ‘Niitaka’ pear over the South Korea in 2018. Geographical areas corresponding to flowering dates on April 8 are marked with a red bold line and main production areas for each fruit are marked with black bold line.

NRGSBM_2019_v21n1_55_f0004.png 이미지

Fig. 4. Geographic distribution for number of spring freeze damaged for apple, peach, and pear in 2018. The main production areas for each fruit are marked with black bold line.

NRGSBM_2019_v21n1_55_f0005.png 이미지

Fig. 5. Geographic distribution of spring freeze risk probability for apple, peach, and pear on 8 April 2018. The main production areas for each fruit are marked with black bold line.

Table 1. Cumulative heat unit needed for bud burst (Hub) and flowering (HUf), linear function for estimation of spring frost damage (SFD) by developmental stage of fruit flower buds

NRGSBM_2019_v21n1_55_t0001.png 이미지

Table 2. Flowering dates in 2018, and minimum temperature, damaged area, and the average/maximum spring freeze risk probability on April 8 in main production areas for each fruit

NRGSBM_2019_v21n1_55_t0002.png 이미지

References

  1. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce, 2004: Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology 126, 1-13. https://doi.org/10.1016/j.agrformet.2004.03.002
  2. Cho, J. H., J. M. Suh, J. S. Kang, C. O. Hong, H. M. Shin, S. G. Lee, and W. T. Lim, 2013: The economic impacts of abnormal climate on fall Chinese cabbage farmers and consumers. Journal of Environmental Science International 22(12), 1691-1698. (in Korean with English abstract) doi:10.5322/JESI.2013.22.12.1691
  3. Kim, D. J., and J. H. Kim, 2018: An outlook of changes in the flowering dates and low temperature after flowering under the RCP8.5 projected climate condition. Korean Journal of Agricultural and Forest Meteorology 20(4), 313-320. (in Korean with English abstract) doi:10.5532/KJAFM.2018.20.4.313
  4. Kim, J. H., S. O. Kim, U. Chung, K. H. Hwang, J. B. Kim, I. K. Yoon, and J. I. Yun, 2009a: Geospatial assessment of frost and freeze risk in 'Changhowon Hwangdo' peach (Prunus perica) trees as affected by the projected winter warming in South Korea: II. Freezing risk index based on dormancy depth as a proxy for physiological tolerance to freezing temperature. Korean Journal of Agricultural and Forest Meteorology 11(4), 213-220. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.4.213
  5. Kim, S. O., U. Chung, S. H. Kim, I. M. Choi, and J. I. Yun, 2009b: The suitable region and site for 'Fuji' apple under the projected climate in South Korea. Korean Journal of Agricultural and Forest Meteorology 11(4), 162-173. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.4.162
  6. Kim, S. O., J. H. Kim, U. Chung, S. H. Kim, G. H. Park, and J. I. Yun, 2009c: Quantification of temperature effects on flowering date determination in Niitaka pear. Korean Journal of Agricultural and Forest Meteorology 11(2), 61-71. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.2.061
  7. KMA (Korea Meteorological Administration), 2019: Abnormal Climate Report 2018 (이상기후 보고서), 198pp.
  8. KOSIS (Korean Statistical Information Service), 2018: http://kosis.kr (2018.12.31)
  9. Lim, S. H., J. J. Choi, J. H. Choi, S. J. Kim, Y. H. Kwon, J. H. Han, and H. C. Lee, 2014: Freezing hardiness of several pear cultivars according to degree and duration of low temperatures. Korean Journal of Agricultural and Forest Meteorology 16(1), 51-58. (in Korean with English abstract) doi: 10.5532/KJAFM.2014.16.1.51
  10. Proebsting, E. L., and H. H. Mills, 1978: Low temperature resistance of developing flower buds of six deciduous fruit species. Journal of the American Society for Horticultural Science 103, 192-198.
  11. RDA (Rural Development Administration), 2018: http://www.nongsaro.go.kr (2018.12.31)
  12. Stern, N., 2006: The Stern Review: The Economics of Climate Change. Cambridge University Press. 575pp.
  13. UNISDR (United Nation Office of Disaster Risk Reduction), 2018: https://www.unisdr.org/ (2018.12.31)
  14. Westwood, M. N., 1993: Temperate-zone Pomology: Physiology and Culture (3rd ed.). Timber Press Inc., 428-429.
  15. 고광출, 문두길, 1979: 개화기 전후 저온처리에 의한 복숭아, 배 및 사과 화기의 저온 장해. 서울대농학연구 4(2), 179-188.
  16. 한점화, 2018: 2018년 과수 개화기 저온피해 현황 및 대응책. 한국과수협회 235, 16-20.