DOI QR코드

DOI QR Code

Development of Low-Power Electronic Scanner for 17GHz Band

17GHz 대역의 저출력 Electronic Scanner 개발

  • Received : 2018.12.12
  • Accepted : 2019.02.11
  • Published : 2019.04.30

Abstract

Today, most detection systems used in the marine industry are the majority of devices operating in the high-power X-band bands. While most detection systems using these frequencies in the X-Band band can expect a wide range of detection performance, they are not suitable for precision detection and have the limitation that they are large and heavy. In this paper, we designed, fabricated and tested an electronic scanner capable of detecting not only the surrounding objects but also the ocean waves at a low power of less than 2W in the 17GHz frequency band of the Ku-Band. A high-performance patch array antenna and Doppler effect were utilized to obtain sufficient detection performance even at low power. As a result of the test, it was confirmed that the performance was sufficiently valuable.

오늘날 해양 업계에서 활용되는 대부분의 탐지 시스템은 고출력의 X-Band 대역을 활용한 장비들이 대다수이다. 이러한 X-Band 대역의 주파수를 활용하는 대부분의 탐지 시스템들은 광범위한 탐지 성능 이득을 기대할 수 있지만, 장비의 특성상 크고 무거우며 정밀한 탐지를 요하는 분야에서는 적합하지 않다는 한계점을 지닌다. 본 논문에서는 Ku-Band 대역 중 17GHz 주파수 대역에서 2W 미만의 저출력으로 주변의 물표뿐만 아니라 바다의 파랑까지 탐지가 가능한 Electronic Scanner를 설계 및 제작하고, 시험을 진행하였다. 저전력에서도 충분한 탐지성능을 확보하기 위하여 고성능의 패치 어레이 안테나 및 도플러 효과를 활용하여 충분한 탐지 성능을 확보하였으며, 이에 대한 시험 결과 충분한 가능성을 확인할 수 있었다.

Keywords

HOJBC0_2019_v23n4_445_f0001.png 이미지

Fig. 1 Sea Backscatter Coefficient (dBm2/m2)

HOJBC0_2019_v23n4_445_f0002.png 이미지

Fig. 2 Interleaved Pulse Schedule Image

HOJBC0_2019_v23n4_445_f0003.png 이미지

Fig. 3 RF Board Process

HOJBC0_2019_v23n4_445_f0004.png 이미지

Fig. 4 Transceiver PCB

HOJBC0_2019_v23n4_445_f0005.png 이미지

Fig. 5 Pattern @ 17.55 GHz

HOJBC0_2019_v23n4_445_f0006.png 이미지

Fig. 6 ST5918S3008-L2

HOJBC0_2019_v23n4_445_f0007.png 이미지

Fig. 7 Interconnections for Prototype System

HOJBC0_2019_v23n4_445_f0008.png 이미지

Fig. 8 Prototype Picture

HOJBC0_2019_v23n4_445_f0009.png 이미지

Fig. 9 RF Board Picture

HOJBC0_2019_v23n4_445_f0010.png 이미지

Fig. 10 Timing Board Schematic

HOJBC0_2019_v23n4_445_f0011.png 이미지

Fig. 11 Timing Board Picture

HOJBC0_2019_v23n4_445_f0012.png 이미지

Fig. 12 Doppler Image of Sphere @ 100m

HOJBC0_2019_v23n4_445_f0013.png 이미지

Fig. 13 Doppler Image of Waves (with Sailboat)

HOJBC0_2019_v23n4_445_f0014.png 이미지

Fig. 14 Comparison of Real Beach and Doppler Images

HOJBC0_2019_v23n4_445_f0015.png 이미지

Fig. 15 PPI Image

HOJBC0_2019_v23n4_445_f0016.png 이미지

Fig. 16 PPI Image with Clutter Removed

Table. 1 Nominal System Parameters

HOJBC0_2019_v23n4_445_t0001.png 이미지

Table. 2 Interleaved Pulse Schedule

HOJBC0_2019_v23n4_445_t0002.png 이미지

Table. 3 Retained Samples

HOJBC0_2019_v23n4_445_t0003.png 이미지

Table. 4 Antenna Specifications

HOJBC0_2019_v23n4_445_t0004.png 이미지

References

  1. P. Chen, G. Zheng, D. Hauser, and F. Xu, "Quasi-Gaussian probability density function of sea wave slopes from near nadir Ku-band radar observations," Remote Sensing Environment, vol. 217, pp. 86-100, Nov. 2018. https://doi.org/10.1016/j.rse.2018.07.027
  2. F. Frappart, C. Fatras, E. Mougin, V. Marieu, A.T. Diepkile, F. Blarel, and P. Borderies, "Radar altimetry backscattering signatures at Ka, Ku, C, and S bands over West Africa," Physics and Chemistry of the Earth, Parts A/B/C, vol. 83-84, pp. 96-110, May 2015. https://doi.org/10.1016/j.pce.2015.05.001
  3. S. W. Lee, S. R. Lee, and S. C. Kim, "Ship Positioning Estimation Using Phased Array Antenna in FMCW Radar System for Small-Sized Ships," The Journal of Korean Institute of Communications and Information Sciences, vol. 40, no. 6, pp. 1130-1141, Jun. 2015. https://doi.org/10.7840/kics.2015.40.6.1130
  4. M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar, Raleigh, NC:Scitech Pub., 2010.
  5. L. Ren, Y. S. Koo, Y. Wang, and A. E. Fathy, "Noncontact heartbeat detection using UWB impulse doppler radar," in IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, San Diego: CA, pp. 14-16, 2015.
  6. L. Liu, M. Popescu, M. Skubic, M. Rantz, T. Yardibi, and P. Cuddihy, "Automatic Fall Detection Based on Doppler Radar Motion Signature," in Proceeding of the 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, pp. 222-225, 2011.
  7. H. Dankert, "Measurement of Waves, Wave Groups and Wind Fields using Nautical Radar-Image Sequences," Ph. D. dissertation, University of Hamburg, Hamburg, 2003.
  8. Rutter Inc. sigma S6 WaMoS(R) II [Internet]. Available: http://oceanwaves.de/wamos-ii-wave-and-current-monitoring.
  9. H. Y. Cheng, and H. Chien, "Implementation of S-band marine radar for surface wave measurement under precipitation," Remote Sensing of Environment, vol. 188, pp. 85-94, Jan. 2017. https://doi.org/10.1016/j.rse.2016.10.042
  10. F. E. Nathanson, J. P. Reilly, and M. N. Cohen, Radar Design Principles, 2nd ed. Raleigh, NC:Scitech Pub., 1999.