DOI QR코드

DOI QR Code

Finite Element Analysis for the Penetration Phenomena of Shaped Charge Jets using Hydrodynamic Theory

Hydrodynamic 이론을 이용한 성형작약탄두 제트의 관통 현상에 관한 유한요소 해석

  • 강영구 ((주)한화 방산부문 종합연구소)
  • Received : 2019.01.04
  • Accepted : 2019.01.22
  • Published : 2019.04.30

Abstract

In this paper, the penetration process of Shaped charge jet(SCJ) was simulated through finite element analysis to obtain physical quantities such as jet incidence velocity, penetration rate, and penetration increment. As a result of applying these physical quantities to the hydrodynamic theory, it was confirmed that the penetration efficiency of the jet with a high incident velocity is higher than that of the following slow jet. This efficiency decreased sharply when the jet was slower than the hydrodynamic limit(HL). On the other hand, the comparison of penetration increment and jet consumption over time showed that the length extension effect should be considered for SCJ's theoretical penetration analysis.

본 논문은 Shaped charge jet(SCJ)의 관통 과정을 유한요소해석을 통해 모사하여 제트 입사속도, 관통률 그리고 관통량 증분과 같은 물리량들을 획득하였다. 이 물리량들을 hydrodynamic 이론에 적용하여 입사 제트 속도의 효율을 분석한 결과, 입사 속도가 빠른 제트의 관통 효율은 이어지는 느린 제트에 비해 높은 것을 확인하였다. 이 효율은 hydrodynamic limit(HL) 미만인 제트인 경우 큰 폭으로 감소하였다. 한편, 시간에 따른 관통량 증분과 제트 소모량의 비교는 SCJ의 이론적인 관통현상 분석을 위해서는 길이 연장 효과를 고려해야함을 보였다.

Keywords

References

  1. Abrahamson, G.R., Goodier, J.N. (1963) Penetration by Shaped Charge Jets of Nonuniform Velocity, J. Appl. Phys., 34(1), pp.195-199. https://doi.org/10.1063/1.1729065
  2. Birkhoff, G., MacDougall, D.P., Pugh, E.M., Taylor, S.G. (1948) Explosives with Lined Cavities, J. Appl. Phys., 19(6), pp.563-582 https://doi.org/10.1063/1.1698173
  3. Bolstad, J., Mandell, D. (1992) Calculation of a Shaped Charge Jet (king MESA-2D and MESA-3D Hydrodynamic Computer Codes, Los Almos National Laboratory, University of California for the United States Department of Energy.
  4. DiPersio, R., Simon, J., Merendino, A. (1965) Penetration of Shaped-charge Jets into Metallic Targets, US Army Ballistic Research Laboratory, BRL.
  5. Eichelberger, R.J. (1956) Experimental Test of the Theory of Penetration by Metallic Jets, J. Appl. Phys., 27(1), pp.63-68. https://doi.org/10.1063/1.1722198
  6. Fedorov, S.V., Bayanova, Y.M., Ladov, S.V. (2015) Numerical Analysis of the Effect of the Geometric Parameters of a Combined Shaped-charge Liner on the Mass and Velocity of Explosively Formed Compact Elements, Combust., Explos., & Shock Waves, 51(1), pp.130-142. https://doi.org/10.1134/S0010508215010141
  7. Gooch, W.A., Burkins, M.S., Walters, W.P., Kozhushko, A.A., Sinani, A.B. (2001) Target Strength Effect on Penetration by Shaped Charge Jets, Int. J. Impact Eng., 26(1-10), pp.243-248. https://doi.org/10.1016/S0734-743X(01)00083-5
  8. Kang, Y., Jeon, J. (2018) Finite Element Analysis of the Impact of Liner Thickness and Hydrodynamic Limit on the Penetration Depth of a Shaped Charge Warhead, J. Mech. Sci. & Technol., 32(12), pp.5797-5805. https://doi.org/10.1007/s12206-018-1127-3