DOI QR코드

DOI QR Code

SOME STABILITY RESULTS FOR SEMILINEAR STOCHASTIC HEAT EQUATION DRIVEN BY A FRACTIONAL NOISE

  • Received : 2018.05.07
  • Accepted : 2018.09.17
  • Published : 2019.05.31

Abstract

In this paper, we consider a semilinear stochastic heat equation driven by an additive fractional white noise. Under the pathwise uniqueness property, we establish various strong stability results. As a consequence, we give an application to the convergence of the Picard successive approximation.

Keywords

References

  1. E. Alos and D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stoch. Stoch. Rep. 75 (2003), no. 3, 129-152. https://doi.org/10.1080/1045112031000078917
  2. K. Bahlali, M. Eddahbi, and M. Mellouk, Stability and genericity for spde's driven by spatially correlated noise, J. Math. Kyoto Univ. 48 (2008), no. 4, 699-724. https://doi.org/10.1215/kjm/1250271314
  3. K. Bahlali, B. Mezerdi, and Y. Ouknine, Pathwise uniqueness and approximation of solutions of stochastic differential equations, in Seminaire de Probabilites, XXXII, 166-187, Lecture Notes in Math., 1686, Springer, Berlin, 1998.
  4. R. M. Balan and C. A. Tudor, Erratum to: "The stochastic heat equation with fractionalcolored noise: existence of the solution", ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 343-347.
  5. V. Bally, I. Gyongy, and Pardoux, White noise driven parabolic SPDEs with measurable drift, J. Funct. Anal. 120 (1994), no. 2, 484-510. https://doi.org/10.1006/jfan.1994.1040
  6. V. Bally, A. Millet, and M. Sanz-Sole, Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations, Ann. Probab. 23 (1995), no. 1, 178-222. https://doi.org/10.1214/aop/1176988383
  7. X. Bardina, M. Jolis, and L. Quer-Sardanyons, Weak convergence for the stochastic heat equation driven by Gaussian white noise, Electron. J. Probab. 15 (2010), no. 39, 1267-1295. https://doi.org/10.1214/EJP.v15-792
  8. R. Carmona and D. Nualart, Random nonlinear wave equations: smoothness of the solutions, Probab. Theory Related Fields 79 (1988), no. 4, 469-508. https://doi.org/10.1007/BF00318783
  9. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., New York, 1955.
  10. R. C. Dalang and M. Sanz-Sole, Regularity of the sample paths of a class of second-order spde's, J. Funct. Anal. 227 (2005), no. 2, 304-337. https://doi.org/10.1016/j.jfa.2004.11.015
  11. L. Decreusefond and A. S. Ustunel, Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (1999), no. 2, 177-214. https://doi.org/10.1023/A:1008634027843
  12. G. Denk, D. Meintrup, and S. Schaffer, Modeling, simulation and optimization of integrated circuits, Intern. Ser. Numerical Math. 146 (2004), 251-267.
  13. O. El Barrimi and Y. Ouknine, Approximation of solutions of SDEs driven by a fractional Brownian motion, under pathwise uniqueness, Mod. Stoch. Theory Appl. 3 (2016), no. 4, 303-313. https://doi.org/10.15559/16-VMSTA69
  14. M. Gubinelli, A. Lejay, and S. Tindel, Young integrals and SPDEs, Potential Anal. 25 (2006), no. 4, 307-326. https://doi.org/10.1007/s11118-006-9013-5
  15. I. Gyongy and D. Nualart, Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise, Potential Anal. 7 (1997), no. 4, 725-757. https://doi.org/10.1023/A:1017998901460
  16. S. C. Kou and X. Sunney, Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule, Phys. Rev. Letters 93 (2004), no. 18.
  17. B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422-437. https://doi.org/10.1137/1010093
  18. J. Memin, Y. Mishura, and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statist. Probab. Lett. 51 (2001), no. 2, 197-206. https://doi.org/10.1016/S0167-7152(00)00157-7
  19. D. Nualart and Y. Ouknine, Regularization of quasilinear heat equations by a fractional noise, Stoch. Dyn. 4 (2004), no. 2, 201-221. https://doi.org/10.1142/S0219493704001012
  20. L. Quer-Sardanyons and S. Tindel, The 1-d stochastic wave equation driven by a fractional Brownian sheet, Stochastic Process. Appl. 117 (2007), no. 10, 1448-1472. https://doi.org/10.1016/j.spa.2007.01.009
  21. J. M. Rassias, Counterexamples in Differential Equations and Related Topics, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.
  22. A. V. Skorokhod, Studies in the Theory of Random Processes, Translated from the Russian by Scripta Technica, Inc, Addison-Wesley Publishing Co., Inc., Reading, MA, 1965.
  23. J. B. Walsh, An introduction to stochastic partial differential equations, in Ecole d'ete de probabilites de Saint-Flour, XIV-1984, 265-439, Lecture Notes in Math., 1180, Springer, Berlin, 1986.
  24. M. Yor, Le drap brownien comme limite en loi de temps locaux lineaires, in Seminar on probability, XVII, 89-105, Lecture Notes in Math., 986, Springer, Berlin, 1983.