DOI QR코드

DOI QR Code

STABILITY IN THE ENERGY SPACE OF THE SUM OF N PEAKONS FOR A CAMASSA-HOLM-TYPE EQUATION WITH QUARTIC NONLINEARITY

  • Liu, Xingxing (Department of Mathematics China University of Mining and Technology)
  • Received : 2018.05.29
  • Accepted : 2018.08.22
  • Published : 2019.05.31

Abstract

Considered herein is the orbital stability in the energy space $H^1({\mathbb{R}})$ of a decoupled sum of N peakons for a Camassa-Holm-type equation with quartic nonlinearity, which admits single peakon and multi-peakons. Based on our obtained result of the stability of a single peakon, then combining modulation argument with monotonicity of local energy $H^1$-norm, we get the stability of the sum of N peakons.

Keywords

References

  1. R. Beals, D. H. Sattinger, and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math. 140 (1998), no. 2, 190-206. https://doi.org/10.1006/aima.1998.1768
  2. R. Beals, D. H. Sattinger, and J. Szmigielski, Multi-peakons and a theorem of Stieltjes, Inverse Problems 15 (1999), no. 1, L1-L4. https://doi.org/10.1088/0266-5611/15/1/001
  3. R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), no. 11, 1661-1664. https://doi.org/10.1103/PhysRevLett.71.1661
  4. R. Camassa, D. D. Holm, and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33. https://doi.org/10.1016/S0065-2156(08)70254-0
  5. R. M. Chen, Y. Liu, C. Qu, and S. Zhang, Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion, Adv. Math. 272 (2015), 225-251. https://doi.org/10.1016/j.aim.2014.12.003
  6. A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 321-362. https://doi.org/10.5802/aif.1757
  7. A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2008, 953-970. https://doi.org/10.1098/rspa.2000.0701
  8. A. Constantin, The trajectories of particles in Stokes waves, Invent. Math. 166 (2006), no. 3, 523-535. https://doi.org/10.1007/s00222-006-0002-5
  9. A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 2, 303-328.
  10. A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasilinear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), no. 5, 475-504. https://doi.org/10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
  11. A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998), no. 2, 229-243. https://doi.org/10.1007/BF02392586
  12. A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2) 173 (2011), no. 1, 559-568. https://doi.org/10.4007/annals.2011.173.1.12
  13. A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), no. 1, 165-186. https://doi.org/10.1007/s00205-008-0128-2
  14. A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000), no. 5, 603-610. https://doi.org/10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
  15. K. El Dika and L. Molinet, Stability of multipeakons, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 4, 1517-1532. https://doi.org/10.1016/j.anihpc.2009.02.002
  16. K. El Dika and L. Molinet, Stability of multi antipeakon-peakons profile, Discrete Contin. Dyn. Syst. Ser. B 12 (2009), no. 3, 561-577. https://doi.org/10.3934/dcdsb.2009.12.561
  17. A. S. Fokas, The Korteweg-de Vries equation and beyond, Acta Appl. Math. 39 (1995), no. 1-3, 295-305. https://doi.org/10.1007/BF00994638
  18. B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Backlund transformations and hereditary symmetries, Phys. D 4 (1981/82), no. 1, 47-66. https://doi.org/10.1016/0167-2789(81)90004-X
  19. Y. Fu, G. Gui, C. Qu, and Y. Liu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity, J. Differential Equations 255 (2013), no. 7, 1905-1938. https://doi.org/10.1016/j.jde.2013.05.024
  20. B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D 95 (1996), no. 3-4, 229-243. https://doi.org/10.1016/0167-2789(96)00048-6
  21. G. Gui, Y. Liu, P. J. Olver, and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys. 319 (2013), no. 3, 731-759. https://doi.org/10.1007/s00220-012-1566-0
  22. A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Non-linearity 25 (2012), no. 2, 449-479.
  23. A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A 41 (2008), no. 37, 372002, 10 pp.
  24. R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech. 455 (2002), 63-82. https://doi.org/10.1017/S0022112001007224
  25. X. Liu, Y. Liu, and C. Qu, Stability of peakons for the Novikov equation, J. Math. Pures Appl. (9) 101 (2014), no. 2, 172-187. https://doi.org/10.1016/j.matpur.2013.05.007
  26. X. Liu, Y. Liu, and C. Qu, Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv. Math. 255 (2014), 1-37. https://doi.org/10.1016/j.aim.2013.12.032
  27. X. X. Liu, Stability of peakons for a Camassa-Holm-type equation with quartic nonlinearity , submitted.
  28. Y. Liu, P. J. Olver, C. Qu, and S. Zhang, On the blow-up of solutions to the integrable modified Camassa-Holm equation, Anal. Appl. (Singap.) 12 (2014), no. 4, 355-368. https://doi.org/10.1142/S0219530514500274
  29. Y. Martel, F. Merle, and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002), no. 2, 347-373. https://doi.org/10.1007/s00220-002-0723-2
  30. V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A 42 (2009), no. 34, 342002, 14 pp.
  31. P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E (3) 53 (1996), no. 2, 1900-1906.
  32. Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys. 47 (2006), no. 11, 112701, 9 pp. https://doi.org/10.1063/1.2365758
  33. Z. Qiao and X. Li, An integrable equation with nonsmooth solitons, Theoret. and Math. Phys. 167 (2011), no. 2, 584-589. https://doi.org/10.1007/s11232-011-0044-8
  34. C. Qu, X. Liu, and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys. 322 (2013), no. 3, 967-997. https://doi.org/10.1007/s00220-013-1749-3
  35. E. Recio and S. C. Anco, A general family of multi-peakon equations, https://arxiv.org/abs/1609.04354.
  36. J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 1-48. https://doi.org/10.12775/TMNA.1996.001
  37. G. B. Whitham, Linear and Nonlinear Waves, reprint of the 1974 original, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999.
  38. X. Wu and Z. Yin, Global weak solutions for the Novikov equation, J. Phys. A 44 (2011), no. 5, 055202, 17 pp.