DOI QR코드

DOI QR Code

Correlation study between propeller noise and cavitation erosion with inclined propeller model test

경사축 추진기 모형시험에서 추진기 소음과 캐비테이션 침식 상관관계 연구

  • Received : 2019.04.09
  • Accepted : 2019.05.14
  • Published : 2019.05.31

Abstract

In this paper, to investigate the cavitation erosion phenomenon on the ship propeller, the correlation between the propeller noise and the cavitation intensity was analyzed. Cavitation erosion is closely related to cavitation collapsing intensity, which can be defined as the frequency and intensity of cavitation collapse. The pressure wave generated by cavitation collapse appears as a continuous acoustic pulse and this result is analyzed with the cavitation behavior to determine the relationship of the propeller noise to cavitation collapse intensity. This technique is applied to the propeller erosion test using the inclined shaft propeller model.

본 논문은 선박 추진기의 캐비테이션 침식현상을 연구하기 위하여 추진기에서 발생하는 소음과 캐비테이션 격렬도의 연관성에 대하여 분석하였다. 캐비테이션 침식은 캐비테이션 붕괴의 빈도와 강도로 정의 할 수 있는 '캐비테이션 격렬도'와 밀접히 연관되어 있다. 캐비테이션 붕괴에 의해서 발생하는 압력파는 다양한 진폭과 지속시간의 연속적인 펄스의 형태로 나타나며 이를 캐비테이션 거동과 동조 분석하여 캐비테이션 붕괴에 따른 추진기 소음 연관성을 파악하였다. 이 기법을 경사축 추진기시험을 활용하여 추진기침식시험에 대한 정량적 평가방안을 제시하였다.

Keywords

GOHHBH_2019_v38n3_328_f0001.png 이미지

Fig. 1. ASTM G-32 test.[1]

GOHHBH_2019_v38n3_328_f0002.png 이미지

Fig. 2. Propeller cavitation.

GOHHBH_2019_v38n3_328_f0003.png 이미지

Fig. 3. Schematic diagram of test set-up.

GOHHBH_2019_v38n3_328_f0004.png 이미지

Fig. 4. Model propeller and paint application.

GOHHBH_2019_v38n3_328_f0005.png 이미지

Fig. 5. High speed camera images sequence of propeller cavitation.

GOHHBH_2019_v38n3_328_f0006.png 이미지

Fig. 6. High speed camera images sequence of propeller cavitation (cavitation collapsing and rebounding).

GOHHBH_2019_v38n3_328_f0007.png 이미지

Fig. 7. Cavitation induced acoustic pressure.

GOHHBH_2019_v38n3_328_f0008.png 이미지

Fig. 8. Cavitation erosion damage.

References

  1. K. H. Kim, G. Chahine, J. P. Franc, and Karimi, Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, Fluid Mechanics and Its Applications (Springer, Dordrecht, 2014), pp. 21-25.
  2. B. G. Paik, K. Y. Kim, K. S. Kim, T. S. Kim, K. R. Kim, Y. H. Jang, and S. U. Lee, "Development of new cavitation erosion test method for analyzing the durability of erosion resistance paint," J. SNAK. 47, 132-140 (2010). https://doi.org/10.3744/SNAK.2010.47.2.132
  3. H. Seol and S. Y. Kim, "Study on the analysis of model propeller tip vortex cavitation inception" (in Korean), J. Acoust. Soc. Kr. 37, 387-395 (2018).
  4. M. Dular and M. Petkovsek, "On the mechanism of cavitation erosion - Coupling high speed videos to damage patterns," Experimental Thermal and Fluid Science, 68, 359-370 (2015). https://doi.org/10.1016/j.expthermflusci.2015.06.001
  5. G. Bark and W. B. Berlekom, "Experimental investigations of cavitation dynamics and cavitation noise," 12th Symposium on Naval Hydrodynamics, Washington D.C. 470-493 (1978).
  6. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration volume II (Academic Press, London, 1986), pp. 460-469.