DOI QR코드

DOI QR Code

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition

원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지

  • Jeong, Min Ji (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jo, Young Joon (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Sun Hwa (College of Infomation and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Joon Shin (College of Infomation and Communication Engineering, Sungkyunkwan University) ;
  • Im, Kyung Jin (Solar R&D division, JUSUNG Engineering Co. Ltd.) ;
  • Seo, Jeong Ho (Solar R&D division, JUSUNG Engineering Co. Ltd.) ;
  • Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
  • Received : 2019.03.29
  • Accepted : 2019.04.25
  • Published : 2019.05.27

Abstract

Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Keywords

References

  1. W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. D. Ceuster, K. R. McIntosh, D. D. Smith and R. M. Swanson, in Proc., 19th IEEE EPVSEC, (2004), p. 387.
  2. D. L. Meier, V. Chandrasekaran, H. P. Davis, A. M. Payne, X. Wang, V. Yelundur, J. E. Oeill, Y. W. Ok, F. Zimbardi and A. Rohatgi, in Proc., 1 IEEE J. Photovolt. (2011), p. 123.
  3. A. Cuevas, T. Allen, J. Bullock, Yi. Wan, D. Van, X. Zhang, in Proc., 42nd IEEE PVSC, (2015), p. 1.
  4. L. G. Gerling, S. Mahato, C. Voz, R. Alcubilla and J. Puigdollers, Appl. Sci., 5, 695 (2015). https://doi.org/10.3390/app5040695
  5. J. Geissbuhler, J. Werner, S. Martin de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf and C. Ballif, Appl. Phys. Lett., 107, 081601 (2015). https://doi.org/10.1063/1.4928747
  6. D. K. Nandi and S. K. Sarkar, Appl. Mech. Mater., 492, 375 (2014). https://doi.org/10.4028/www.scientific.net/AMM.492.375
  7. M. Diskus, O. Nilsena and H. Fjellvag, J. Mater. Chem., 21, 705 (2011). https://doi.org/10.1039/C0JM01099E
  8. T. Sun, R. Wang, R. Liu, C. Wu, Y. Zhong, Y. Liu, Y. Wang, Y. Han, Z. Xia, Y. Zou, T. Song, N. Koch, S.Duhm and B. Sun, Phys. Status Solidi RRL, 1700107, 3 (2017).
  9. D. Xiang, C. Han, J. Zhang and W. Chen, Sci. Rep., 4, 4891 (2014). https://doi.org/10.1038/srep04891
  10. A. L. F. Cauduro, R. Reis, G. Chen, A. K. Schmid, Horst-Gunter Rubahn, Morten Madsen, Ultramicroscopy., 183, 99, (2017). https://doi.org/10.1016/j.ultramic.2017.03.025
  11. C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, and A. Javey, Nano Lett., 14, 967 (2014). https://doi.org/10.1021/nl404389u
  12. G. Gregory, M. Wilson, H. Ali and K. O. Davis, in Proc., 7th IEEE WCPEC, (2018), p. 2006.
  13. L. Neusel, M. Bivour and M. Hermle, Energy Procedia., 124, 425 (2017). https://doi.org/10.1016/j.egypro.2017.09.268
  14. M. Vasilopoulou, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, S. Kennou, L. Sygellou, A. Soultati, I. Kostis, G. Papadimitropoulos, D. Davazoglou and P. Argitis, J. Am. Chem. Soc., 134, 16178 (2012). https://doi.org/10.1021/ja3026906
  15. W. J. Yoon, J. E. Moore, E. h. Cho, D. Scheiman, N. A. Kotulak, E. Cleveland, Y. W. Ok, P. P. Jenkins, A. Rohatgi and R. J. Walters, Jpn. J. Appl. Phys., 56, 08MB18 (2017). https://doi.org/10.7567/JJAP.56.08MB18