DOI QR코드

DOI QR Code

Technology Trends in Adhesives for Extreme Environments

극한 환경 대응용 점·접착 소재의 기술 동향

  • Lee, Hyang Moo (School of Applied Chemical Engineering, Kyungpook National University) ;
  • Cheong, In Woo (School of Applied Chemical Engineering, Kyungpook National University)
  • 이향무 (경북대학교 응용화학공학과) ;
  • 정인우 (경북대학교 응용화학공학과)
  • Published : 2019.03.31

Abstract

Keywords

JGMHB1_2019_v20n1_29_f0001.png 이미지

Figure 1. 극한환경 점⋅접착 소재의 예와 극한환경용 점⋅접착 소재가 사용되는 여러 분야

JGMHB1_2019_v20n1_29_f0002.png 이미지

Figure 2. 극저온 접착제로 사용되는 고분자의 구조:(a) 에폭시 접착제용 올리고머, (b) 폴리우레탄, (c) 실리콘 고분자.

JGMHB1_2019_v20n1_29_f0003.png 이미지

Figure 3. ASTM E-595법에 따른 TML 및 CVCM 측정 방법[24].

JGMHB1_2019_v20n1_29_f0004.png 이미지

Figure 4. 홍합의 족사는 수중에서 강한 접착력을 만들어내며 족사 단백질을 구성하는 고분자의 카테콜 구조는 다양한 피착제와 잘 결합한다.

Table 1. 극한환경 대응을 위한 접착제의 주요 요구 물성

JGMHB1_2019_v20n1_29_t0001.png 이미지

Table 2. 고온 접착제용 고분자의 화학구조식과 유리전이온도

JGMHB1_2019_v20n1_29_t0002.png 이미지

References

  1. E. A. S. Marques, L. F. M. D. Silva, M. D. Banea, and R. J. C. Carbas, J. Adhes., 91, 556 (2015). https://doi.org/10.1080/00218464.2014.943395
  2. J. H. Han, and C. G. Kim, Compos. Struct., 72, 645 (2006).
  3. E. Grossman, and I. Gouzman, Nucl. Instrum. Methods. Phys. Res. B., 208, 48 (2003). https://doi.org/10.1016/S0168-583X(03)00640-2
  4. T. M. Mower, Int. J. Adhes. Adhes. 87, 64 (2018). https://doi.org/10.1016/j.ijadhadh.2018.08.009
  5. M. Zatarain, C. Villasante, A. Sedano, and R. Bueno, CIRP Ann., 53, 345 (2004). https://doi.org/10.1016/S0007-8506(07)60713-6
  6. J. J. M. Machado, P. M. R. Gamarra, E. A. S. Marques, and L. F. M. da Silva, Compos. Part B-Eng., 138, 243 (2018). https://doi.org/10.1016/j.compositesb.2017.11.038
  7. 조동철, and 정인우, 극저온 접착제의 특성 및 개발 현황, J. Adhes. Interface, 15, 123 (2014).
  8. H. M. S. Iqbal, S. Bhowmik, and R. Benedictus, Int. J. Adhes. Adhes., 72, 43 (2017). https://doi.org/10.1016/j.ijadhadh.2016.10.002
  9. C. P. Yang, G. S. Liou, C. C. Yang,, and K. J. Chen, J. Appl. Polym. Sci., 71, 1691 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1691::AID-APP16>3.0.CO;2-H
  10. J. Adduci, L. L. Chapoy, G. Jonsson, J. Kops, and B. M. Shinde, Polym. Eng. Sci., 21, 712 (1981). https://doi.org/10.1002/pen.760211114
  11. R. F. Hicks, S. E. Babayan, J. Penelon, Q. Truong D. S. F. Cheng, V. V. Le, J. Ghilarducci, A. G. Hsieh, J. M. Deitzel, and Jr. J. W. Gillespie, SAMPE Fall Tehnical Conference Proceedings: Global Advances in Materials and Process Engineering, 1 (2006).
  12. P. J. Jones, R. D. Cook, C. N. McWright, R. J. Nalty, V. Choudhary, and S. E. Morgan, J. Appl. Polym. Sci., 121, 2945 (2011). https://doi.org/10.1002/app.33852
  13. M. Son, H. G. Choi, L. Liu, H. S. Park, and H. C. Choi, Environ. Eng. Res., 19, 339 (2014). https://doi.org/10.4491/eer.2014.045
  14. S. Sasaki, and Y. Hasuda, J. Adhes., 25, 159 (1988). https://doi.org/10.1080/00218468808071257
  15. High Temperature Adhesives Market - Global Forecast to 2019, Markets and Markets (2019).
  16. A. S. Clair, and T. S. Clair, Int. J. Adhes. Adhes., 1, 249 (1981). https://doi.org/10.1016/0143-7496(81)90073-7
  17. R. M. McClitock, and M. J. Hiza, Adv. Cryogenic Eng., 3, 305 (1960).
  18. C. J. Huang, S. Y. Fu, Y. H. Zhang, B. Lauke, L. F. Li, and L. Ye, Cryogenics, 45, 450 (2005). https://doi.org/10.1016/j.cryogenics.2005.03.003
  19. S. R. Sandler, and F. R. Berg, J. Appl. Polym. Sci., 9, 3909 (1965). https://doi.org/10.1002/app.1965.070091212
  20. E. P. Plueddemann, J. Adhes., 2, 184 (1970). https://doi.org/10.1080/0021846708544592
  21. J. M. Scott, G. M. Wells, and D. C. Phillips, J. Mater. Sci., 15, 1436 (1980). https://doi.org/10.1007/BF00752123
  22. A. Yoshimura, T. Takaki, Y. Noji, T. Yokozeki, T. Ogasawara, and S. Ogihara, J. Adhes. Sci. Technol., 26, 1017 (2012). https://doi.org/10.1163/156856111X593694
  23. Emerging Innovations in Adhesive Technologies - Sustainable, Highly Durable, and Cost-effective Adhesives Expected to Rise in Demand Across Applications, Frost&Sullivan (2017).
  24. ASTM E 595 - 93, Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment, American Society for Testing and Materials (1999).
  25. R. Pal, S. Sudhi, and R. Raghavan, J. Appl. Polym. Sci., 136, 47520 (2019). https://doi.org/10.1002/app.47520
  26. A. K. Gupta, K. V. Kurup, J. Santhanam, and P. Vijendran, Vacuum 27, 505 (1967).
  27. V. Malave, B. Burkiu, B. Riegler, R. Johnson, and R. Thomaier, J. Spacecraft Rockets 48, 235 (2011). https://doi.org/10.2514/1.49476
  28. A. H. Hofman, I. A. van Hees, J. Yang, and M. Kamperman, Adv. Mater., 30, 1704640 (2017). https://doi.org/10.1002/adma.201704640
  29. M. J. Sever. J. T. Weisser, J. Monahan, S. Srinivasan, and J. J. Wilker, Angew. Chem. Int. Ed., 43, 448 (2004). https://doi.org/10.1002/anie.200352759
  30. C. Zhong, T. Gurry, A. A. Cheng, J. Downey, Z. Deng, C. M. Stultz, and T. K. Lu, Nat. Nanotechnol., 9, 858 (2014). https://doi.org/10.1038/nnano.2014.199
  31. Y. Liu, H. Meng, Z. Qian, N. Fan, W. Choi, F. Zhao, and B. P. Lee, Angew. Chem. Int. Ed., 56, 4224 (2017). https://doi.org/10.1002/anie.201700628
  32. J. J. Wilker, Angew. Chem. Int. Ed., 49, 8076 (2010). https://doi.org/10.1002/anie.201003171
  33. M. A. North, C. A. D. Grosso, and J. J. Wilker, ACS Appl. Mater. Interfaces, 9, 7866 (2017). https://doi.org/10.1021/acsami.7b00270
  34. A. Cholewinski, F. Yang, and B. Zhao, Mater. Horiz., 6, 285 (2019) 285-293. https://doi.org/10.1039/C8MH01421C
  35. S. Baik, J. Kim, H. J. Lee, T. H. Lee, C. Pang, Adv. Sci., 5, 1800100 (2018). https://doi.org/10.1002/advs.201800100
  36. S. Chun, D. W. Kim, S. Baik, H. J. Lee, J. H. Lee, S. H. Bhang, and C. Pang, Adv. Funct. Mater., 28, 1805224 (2018). https://doi.org/10.1002/adfm.201805224
  37. S. Baik, D. W. Kim, Y. Par, T. J. Lee, S. H. Bhang, and C. Pang, Nature 546, 396 (2017). https://doi.org/10.1038/nature22382