DOI QR코드

DOI QR Code

Development and evaluation of a 2-dimensional land surface flood analysis model using uniform square grid

정형 사각 격자 기반의 2차원 지표면 침수해석 모형 개발 및 평가

  • Choi, Yun-Seok (Department of Land, Water and Environment Research, Korea Institute of Construction Technology) ;
  • Kim, Joo-Hun (Department of Land, Water and Environment Research, Korea Institute of Construction Technology) ;
  • Choi, Cheon-Kyu (Department of Land, Water and Environment Research, Korea Institute of Construction Technology) ;
  • Kim, Kyung-Tak (Department of Land, Water and Environment Research, Korea Institute of Construction Technology)
  • 최윤석 (한국건설기술연구원 국토보전연구본부) ;
  • 김주훈 (한국건설기술연구원 국토보전연구본부) ;
  • 최천규 (한국건설기술연구원 국토보전연구본부) ;
  • 김경탁 (한국건설기술연구원 국토보전연구본부)
  • Received : 2019.03.27
  • Accepted : 2019.04.18
  • Published : 2019.05.31

Abstract

The purpose of this study is to develop a two-dimensional land surface flood analysis model based on uniform square grid using the governing equations except for the convective acceleration term in the momentum equation. Finite volume method and implicit method were applied to spatial and temporal discretization. In order to reduce the execution time of the model, parallel computation techniques using CPU were applied. To verify the developed model, the model was compared with the analytical solution and the behavior of the model was evaluated through numerical experiments in the virtual domain. In addition, inundation analyzes were performed at different spatial resolutions for the domestic Janghowon area and the Sebou river area in Morocco, and the results were compared with the analysis results using the CAESER-LISFLOOD (CLF) model. In model verification, simulation results were well matched with the analytical solution, and the flow analyses in the virtual domain were also evaluated to be reasonable. The results of inundation simulations in the Janghowon and the Sebou river area by this study and CLF model were similar with each other and for Janghowon area, the simulation result was also similar to the flooding area of flood hazard map. The different parts in the simulation results of this study and the CLF model were compared and evaluated for each case. The results of this study suggest that the model proposed in this study can simulate the flooding well in the floodplain. However, in case of flood analysis using the model presented in this study, the characteristics and limitations of the model by domain composition method, governing equation and numerical method should be fully considered.

본 연구의 목적은 운동량방정식에서 이송가속도항을 제외한 지배방정식을 이용하여 정형 사각 격자 기반의 2차원 지표면 침수해석 모형을 개발하는 것이다. 공간적 이산화는 유한체적법을 이용하였으며, 시간적 이산화는 음해법을 적용하였다. 모형의 실행시간을 단축하기 위해서 CPU를 이용한 병렬계산 기법을 적용하였다. 개발된 모형의 검증을 위해서 해석해와 비교하고, 가상 도메인에서 수치실험을 통해 모형의 거동을 평가하였다. 또한 국내의 장호원 지역과 모로코의 Sebou 강 지역에 대해서 각기 다른 공간해상도로 침수해석을 수행하고, 그 결과를 CAESER-LISFLOOD (CLF) 모형을 이용한 해석 결과와 비교하였다. 모형의 검증 결과 해석해와 잘 일치된 모의 결과를 나타내었고, 가상 도메인에서의 흐름 해석도 타당한 것으로 평가되었다. 장호원 지역과 Sebou 강 지역에 대한 본 연구와 CLF 모형의 침수모의 결과는 침수심과 침수범위에서 서로 유사하게 나타났으며, 장호원 지역의 경우 홍수위험지도의 침수범위와도 유사한 값을 보였다. 본 연구와 CLF 모형의 모의결과에서 상이한 부분에 대해서는 각각의 모의결과를 비교 평가하였다. 연구결과 본 연구에서 제시된 모형은 홍수터에서의 침수 양상을 잘 모의할 수 있는 것으로 평가되었다. 그러나 본 연구에서 제시된 모형을 이용하여 침수해석을 할 경우에는 도메인 구성 방법과 지배방정식 및 해석 방법에 의한 모형의 특징과 한계점을 충분히 고려해야 할 것이다.

Keywords

SJOHCI_2019_v52n5_361_f0001.png 이미지

Fig. 1. Grid indices of spatial discretization

SJOHCI_2019_v52n5_361_f0002.png 이미지

Fig. 2. Comparison of the numerical solution (NS) with analytical solution (AS)

SJOHCI_2019_v52n5_361_f0003.png 이미지

Fig. 3. Domain composition and the elevation (m) of each grid for CASE1

SJOHCI_2019_v52n5_361_f0004.png 이미지

Fig. 4. Calculation results in virtual domains

SJOHCI_2019_v52n5_361_f0005.png 이미지

Fig. 5. Study area

SJOHCI_2019_v52n5_361_f0006.png 이미지

Fig. 6. Discharge boundary condition for each study area

SJOHCI_2019_v52n5_361_f0007.png 이미지

Fig. 7. Comparison of flood areas from CLF model and this study

SJOHCI_2019_v52n5_361_f0008.png 이미지

Fig. 8. Comparisons of maximum water depth, mean water depth, and flooded area from this study and CLF model

Table 1. Conditions of the numerical model

SJOHCI_2019_v52n5_361_t0001.png 이미지

Table 2. Comparison of the calculation results with analytical solutions

SJOHCI_2019_v52n5_361_t0002.png 이미지

Table 3. Conditions of the simulations and comparison of the calculation results from this study and CLF model

SJOHCI_2019_v52n5_361_t0003.png 이미지

References

  1. Bates, P. D., Horritt, M. S., and Fewtrell, T. J. (2010). "A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling." Journal of Hydrology, Vol. 387, No. 1-2, pp. 33-45. https://doi.org/10.1016/j.jhydrol.2010.03.027
  2. Choi, C. K., Choi, Y. S., and Kim, K. T. (2014). "Comparison and evaluation of the inundation areas by levee breaching using LISFLOOD." Journal of Wetlands Research, Vol. 16, No. 3, pp. 383-392. https://doi.org/10.17663/JWR.2014.16.3.383
  3. Choi, C. K., Kim, J. H., Kim, K. H., and Kim, G. H. (2015). "Spatial analysis of flood inundation for ensuring stream space." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 2, pp. 341-351. https://doi.org/10.12652/Ksce.2015.35.2.0341
  4. Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., and Hancock, G. R. (2013). "Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution." Earth Surface Processes and Landforms, Vol. 38, No. 15, pp. 1897-1906. https://doi.org/10.1002/esp.3478
  5. Courant, R., Friedrichs, K., and Lewy, H. (1956). On the partial difference equations of mathematical physics. AEC Research and Development Report, NYO-7689, New York. AEC Computing and Applied Mathematics Centre, pp. 63-76.
  6. DHI (2017a). MIKE 21 Flow Model & MIKE 21 Flood Screening Tool: Hydrodynamic module scientific documentation. Danish Hydraulic Institute, pp. 2-51.
  7. DHI (2017b). MIKE SHE Volume 2: Reference guide. Danish Hydraulic Institute, pp. 2-51.
  8. Di Giammarco, P., Todini, E., and Lamberti, P. (1996). "A conservative finite elements approach to overland flow: the control volume finite element formulation." Journal of Hydrology, Vol. 175, pp. 267-291. https://doi.org/10.1016/0022-1694(95)02855-2
  9. Downer, C. W., and Ogden F. L. (2006). Gridded surface subsurface hydrologic analysis (GSSHA) user's manual. U.S. Army Engineer Research and Development Center, pp. 362-375.
  10. FLO-2D Software (2017). Flo-2D reference manual. FLO-2D Software, Inc., pp. 2-16.
  11. Henderson, F. M. (1966). Open channel flow. MacMillan Publishing Co., New York, NY, pp. 362-375.
  12. Hulbert, G. M., and Jang, I. (1995). "Automatic time step control algorithms for structural dynamics." Computer Methods in Applied Mechanics and Engineering, Vol. 126, No. 1-2, pp. 155-178. https://doi.org/10.1016/0045-7825(95)00791-X
  13. Hunter, N. M., Bates, P. D., Horritt, M. S., and Wilson, M. D. (2007). "Simple spatially-distributed models for predicting flood inundation: A review." Geomorphology, Vol. 90, No. 3-4, pp. 208-225. https://doi.org/10.1016/j.geomorph.2006.10.021
  14. Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D., and Werner, M. G. F. (2005). "An adaptive time step solution for raster-based storage cell modelling of floodplain inundation." Advances in Water Resources, Vol. 28, No. 9, pp. 975-991. https://doi.org/10.1016/j.advwatres.2005.03.007
  15. Isan Corp., and Dongbu Eng. (2018). Flood protection and control master plan in Sebou river, Morocco. KOICA, pp. 1.1-1.5.
  16. Jeon, H. S., Kim, J. S., Kim, K. H., and Hong, I. (2016). "Application of the LISFLOOD-FP model for flood stage prediction on the lower Mankyung river." Journal of Korea Water Resources Association, Vol. 49, No. 6, pp. 459-467. https://doi.org/10.3741/JKWRA.2016.49.6.459
  17. Kim, B. H. (2008). Two-dimensional finite volume model using high resolution Godunov method for simulating extreme flows in natural channels. Ph. D. dissertation, Kyungpook National University, pp. 14-46.
  18. Kim, H. J., Kim, J. M., and Cho, Y. S. (2009). "Numerical analysis of dam-break flow in an experimental channel using cut-cell method." Journal of The Korean Society of Civil Engineers, Vol. 29, No. 2B, pp. 121-129.
  19. Kim, J. H., Choi, Y. S., and Kim, K. T. (2017). "Estimation of flood discharge using satellite-derived rainfall in abroad watersheds - a case study of Sebou watershed, Morocco." Journal of the Korean Association of Geographic Information Studies, Vol. 20, No.3, pp. 141-152. https://doi.org/10.11108/KAGIS.2017.20.3.141
  20. Kim, K. S., Kim, J. S., and Kim, W. (2011). "Estimation technique of computationally variable distance step in 1-D numerical model." Journal of Korea Water Resources Association, Vol. 44, No. 5, pp. 363-376. https://doi.org/10.3741/JKWRA.2011.44.5.363
  21. Lee, B. J., and Yoon, S. S. (2017). "Development of grid based inundation analysis model (GIAM)." Journal of Korea Water Resources Association, Vol. 50, No. 3, pp. 181-190. https://doi.org/10.3741/JKWRA.2017.50.3.181
  22. Lee, C. H., Han, K. Y., and Choi, K. H. (2006a). "DEM based urban inundation analysis model linked with SWMM." Journal of Korea Water Resources Association, Vol. 39, No. 7, pp. 441-452. https://doi.org/10.3741/JKWRA.2006.39.5.441
  23. Lee, C. H., Han, K. Y., and Kim, J. S. (2006b). "Development of urban flood analysis model adopting the unstructured computational grid." Journal of The Korean Society of Civil Engineers, Vol. 26, No. 5B, pp. 511-517.
  24. Lee, M. H., and Yoo, D. H. (2011). "Development and application of diffusion wave-based distributed runoff model." Journal of Korea Water Resources Association, Vol. 44, No. 7, pp. 553-563. https://doi.org/10.3741/JKWRA.2011.44.7.553
  25. Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Cheonmicheon (Riv.) river maintenance master plan report. Ministry of Land, Transport and Maritime, Korea.
  26. Ministry of Land, Transport and Maritime Affairs (MLTM) (2012). Flood risk map report-Hangang Basin. Ministry of Land, Transport and Maritime, Korea, pp. 2.124-5.31.
  27. Scott, F. B., and Brett, F. S. (2002). "Finite-Volume Model for Shallow-Water Flooding of Arbitrary Topography." Journal of Hydraulic Engineering, Vol. 128, No. 3, pp. 289-298. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(289)
  28. Venkatakrishnan, V. (1995). A perspective on unstructured grid flow solvers. ICASE Report No. 95-3, National Aeronautics and Space Administration Langley Research Center, Hampton, VA, USA, pp. 1-14.
  29. WL Delft Hydraulics (2007). Evaluation of inundation models: Limits and capabilities of models. HR Wallingford, UK, pp. 1-7.