DOI QR코드

DOI QR Code

Comparison of Phase-Screen-Generation Methods for Simulating the Effects of Atmospheric Turbulence

대기 외란을 모사하는 위상판 생성 방법 비교

  • Ha, Dung T. (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Mai, Vuong V. (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Hoon (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • ;
  • ;
  • 김훈 (한국과학기술원 전기및전자공학부)
  • Received : 2019.02.08
  • Accepted : 2019.04.30
  • Published : 2019.06.25

Abstract

Phase screens are widely used to simulate the effects of atmospheric turbulence on the phase fluctuations of a light beam. We compare three sampled-based phase-screen-generation methods (the fast-Fourier-transform, subharmonic, and covariance-matrix methods), in terms of accuracy and simulation time. We show that the covariance method generates the phase screens most accurately, with simulation time comparable to the other sampled-based methods.

대기를 매개로 사용하는 광학 시스템에서 대기의 난류가 빛의 위상에 미치는 영향을 모사하기 위하여 위상판이 널리 사용된다. 본 논문에서는 위상판을 생성하는 3가지 방법을 정확성과 위상판 생성 시간 측면에서 비교 분석한다. 비교에 사용된 샘플 기반 위상판 생성 방법은 FFT, 저조파, 공분산 행렬 방법이다. 공분산 행렬 방법으로 생성된 위상판의 경우 구조 함수 값이 이론치에 매우 가까웠으며, 위상판 생성 시간도 다른 두 방법보다 크게 오래 걸리지 않았다.

Keywords

KGHHBU_2019_v30n3_87_f0001.png 이미지

Fig. 1. FFT-based phase screen generation method.

KGHHBU_2019_v30n3_87_f0002.png 이미지

Fig. 2. Modified von Karman spatial power spectrum and the sampling of this spectrum in the FFT method.

KGHHBU_2019_v30n3_87_f0003.png 이미지

Fig. 3. Concept diagram of the subharmonic method.

KGHHBU_2019_v30n3_87_f0004.png 이미지

Fig. 4. Flow diagram of the subharmonic method.

KGHHBU_2019_v30n3_87_f0005.png 이미지

Fig. 5. Flow diagram of the covariance matrix method.

KGHHBU_2019_v30n3_87_f0006.png 이미지

Fig. 6. (a) Phase screen generated by using FFT method. (b) Phase screen generated by using subharmonic method. (c) Phase screen generated by using covariance matrix method.

KGHHBU_2019_v30n3_87_f0007.png 이미지

Fig. 7. (a) Structure function of phase screens generated by using FFT method. (b) Structure function of phase screen at r = 1 m and simulation time as a function of the size of phase screen when the FFT method is used.

KGHHBU_2019_v30n3_87_f0008.png 이미지

Fig. 8. (a) Structure function of phase screens generated by using subharmonic method. (b) Structure function of phase screen at r = 1 m and simulation time as a function of the size of Nsub when the subharmonic method is used.

KGHHBU_2019_v30n3_87_f0009.png 이미지

Fig. 9. (a) Structure function of phase screens generated by using covariance matrix method. (b) Structure function of phase screen at r = 1 m and simulation time as a function of the size of Nlow when the covariance matrix method is used.

Table 1. Parameters used for the generation of phase screens

KGHHBU_2019_v30n3_87_t0001.png 이미지

References

  1. V. Mai, D. Ha, and H. Kim, "Link availability of terrestrial free-space optical communication systems in Korea," Korea J. Opt. Photon. 29, 77-84 (2018). https://doi.org/10.3807/KJOP.2018.29.2.077
  2. S. Karp and L. Stotts, Fundamentals of Electro-Optic Systems Design (Cambridge University Press, 2013).
  3. M. Chatterjee and F. Mohamed, "Investigation of profiled beam propagation through a turbulent layer and temporal statistics of diffracted output for a modified von Karman phase screen," Proc. SPIE 8971, 89710201-16 (2014).
  4. F. Assemat, R. Wilson, and E. Gendron, "Method for simulating infinitely long and non-stationary phase screen with optimized memory storage," Opt. Express 14, 988-999 (2006). https://doi.org/10.1364/OE.14.000988
  5. N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Opt. Eng. 29, 1174-1180 (1990). https://doi.org/10.1117/12.55712
  6. R. Lane, A. Glindemann, and J. Dainty, "Simulation of a Kolmogorov phase screen," Waves Random Media 2, 209-224 (1992). https://doi.org/10.1088/0959-7174/2/3/003
  7. B. J. Herman and L. A. Strugala, "Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence," Proc. SPIE 1221, 183-192 (1990).
  8. C. Harding, R. Johnston, and R. Lane, "Fast simulation of a Kolmogorov phase screen," Appl. Opt. 38, 2161-2170 (1999). https://doi.org/10.1364/AO.38.002161
  9. J. Xiang, "Accurate compensation of the low-frequency components for the FFT-based turbulent phase screen," Opt. Express 20, 681-687 (2012). https://doi.org/10.1364/OE.20.000681
  10. E. Lee and V. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22, 1896-1906 (2004). https://doi.org/10.1109/JSAC.2004.835751
  11. L. Andrews and R. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).
  12. A. Tokovinin, "From differential image motion to seeing," Publ. Astron. Soc. Pacific 114, 1156-1166 (2002). https://doi.org/10.1086/342683
  13. E. Johansson and D. Gavel, "Simulation of stellar speckle imaging," Proc. SPIE 2200, 372-383 (1994).
  14. R. Rampy, D. Gavel, D. Dillon, and S. Thomas, "Production of phase screens for simulation of atmospheric turbulence," Appl. Opt. 51, 8769-8778 (2012). https://doi.org/10.1364/AO.51.008769
  15. M. Roopashree, A. Vyas, and B. Prasad, "Grid size optimization for atmospheric turbulence phase screen simulations," in Proc. Imaging and Applied Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JMB3.
  16. M. Roberts and J. Bowman, "Dealiased convolutions for pseudospectral simulation," J. Phys.: Conf. Ser. 318 (2011).