DOI QR코드

DOI QR Code

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon (Thermal-Hydraulic Design Team, KEPCO Nuclear Fuel) ;
  • Kwak, Dong-Kurl (Graduate School of Disaster Prevention, Kangwon National University)
  • Received : 2018.06.28
  • Accepted : 2018.10.03
  • Published : 2019.06.30

Abstract

Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

Keywords

E1JTC5_2019_v10n2_104_f0001.png 이미지

Fig. 1. Sketch of the droplet on a horizontal surface.

E1JTC5_2019_v10n2_104_f0002.png 이미지

Fig. 2. Droplet movement on a plate by exciting flexural waves.

E1JTC5_2019_v10n2_104_f0003.png 이미지

Fig. 3. Experimental apparatus of the fuel cell system.

E1JTC5_2019_v10n2_104_f0004.png 이미지

Fig. 4. Schematic of the unit-cell experiment setup.

E1JTC5_2019_v10n2_104_f0005.png 이미지

Fig. 5. Schematic of the unit-cell channel shape.

E1JTC5_2019_v10n2_104_f0006.png 이미지

Fig. 6. Appearance of the piezo-actuator.

E1JTC5_2019_v10n2_104_f0007.png 이미지

Fig. 7. Attached piezo-actuators at end of bipolar plate.

E1JTC5_2019_v10n2_104_f0008.png 이미지

Fig. 8. Cell performances with different frequencies.

E1JTC5_2019_v10n2_104_f0009.png 이미지

Fig. 9. Effect of flexural wave on cell performances with different RH. (a) 35%, (b) 50%, (c) 75%, and (d) 90%.

E1JTC5_2019_v10n2_104_f0010.png 이미지

Fig. 10. Voltage as a function of time of different RH. (a) RH 35%, CD 1.6, (b) RH 50%, CD 1.6, (c) RH 75%, CD 1.6, and (d) RH 90%, CD 1.6.

E1JTC5_2019_v10n2_104_f0011.png 이미지

Fig. 11. Effect of flexural wave on cell performances with RH 90% and 1.5 stoichiometry.

E1JTC5_2019_v10n2_104_f0012.png 이미지

Fig. 12. Voltage as a function of time of RH 90% and stoichiometry.

E1JTC5_2019_v10n2_104_f0013.png 이미지

Fig. 13. Voltage as a function of time of RH 90%, 1.5 stoichiometry and cathode inlet temperature 50℃.

E1JTC5_2019_v10n2_104_f0014.png 이미지

Fig. 14. Power as a function of time of RH 90%, 1.5 stoichiometry and cathode inlet temperature 50℃ .

Table 1. Specifications of the measurement devices

E1JTC5_2019_v10n2_104_t0001.png 이미지

Table 2. Experimental condition

E1JTC5_2019_v10n2_104_t0002.png 이미지

References

  1. S. Escribano, J. F. Blachot, J. Etheve, J. Power Sources 2006, 156(1), 8-13. https://doi.org/10.1016/j.jpowsour.2005.08.013
  2. J. H. Lin, W. H. Chen, Y. J. Su, T. H. Ko, Fuel 2008, 87(12), 2420-2424. https://doi.org/10.1016/j.fuel.2008.03.001
  3. X. Li, I. Sabir, Int. J. of Hydrogen Energy 2005, 30(4), 359-371. https://doi.org/10.1016/j.ijhydene.2004.09.019
  4. S. W. Perng, H. W. Wu, Appl. Energy 2010, 87(4), 138601399.
  5. F. Liu, G. Lu, C. Y. Wang, J. of Membrane Sci. 2007, 287(1), 126-131. https://doi.org/10.1016/j.memsci.2006.10.030
  6. P. Karthikeyan, R. J. Vasanth, M. Muthukumar, Int. J. Hydrogen Energy 2015, 40(13), 4641-4648. https://doi.org/10.1016/j.ijhydene.2015.01.175
  7. S. H. Han, N. H. Choi, Y. D. Choi, Int. J. Hydrogen Energy 2014, 39(6), 2628-2638. https://doi.org/10.1016/j.ijhydene.2013.08.063
  8. K. Jiao, J. Bachman, Y. B. Zhou, J. W. Park, Appl. Energy 2014, 115, 75-82. https://doi.org/10.1016/j.apenergy.2013.10.026
  9. Y. Xu, L. Peng, P. Yi, X. Lai, Int. J. Hydrogen Energy 2016, 41(9), 5084-5095. https://doi.org/10.1016/j.ijhydene.2016.01.073
  10. S. S. Arun, R. T. K. Raj, P. Karthikeyan, Energy 2016, 113, 558-573. https://doi.org/10.1016/j.energy.2016.07.079
  11. J. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1991.
  12. A. Torkkeli, J. Saarilahti A. Haara, 14th IEEE Int. Conf. on Micro Electro Mech. Systems, 2001, 475-478.
  13. M. Washizu, IEEE Trans. Ind. Appl. 1998, 34(4), 732-737. https://doi.org/10.1109/28.703965
  14. R. J. Hunter, Foundations of Colloid Science, Oxford University Press, New York, 2001.
  15. J. Scortesse, J. F. Manceau, J. Bastien, J. of Sound and Vibration, 2002, 254(5), 927-938. https://doi.org/10.1006/jsvi.2001.4137
  16. S. Biwersi, J. F. Manceau, F. Bastien, J. Acoust. Soc. Am., 2000, 107(1), 661-664. https://doi.org/10.1121/1.428566
  17. S. Alzuaga, J. F. Manceau, S. Ballandras and F. Bastien, World Congress on Ultrasonic, Paris, 2003, 951-954.
  18. K. Lyklema, Fundamentals of Interface and Colloid Science, Academic Press, New York, 1995