DOI QR코드

DOI QR Code

Partially Carbonized Poly (Acrylic Acid) Grafted to Carboxymethyl Cellulose as an Advanced Binder for Si Anode in Li-ion Batteries

  • Cho, Hyunwoo (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Kyungsu (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Park, Cheol-Min (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Goojin (Advanced Batteries Research Center, Korea Electronics Technology Institute)
  • Received : 2018.10.18
  • Accepted : 2018.10.25
  • Published : 2019.06.30

Abstract

To improve the performance of Si anodes in advanced Li-ion batteries, the design of the electrode plays a critical role, especially due to the large volumetric expansion in the Si anode during Li insertion. In our study, we used a simple fabrication method to prepare Si-based electrodes by grafting polyacrylic acid (PAA) to a carboxymethyl cellulose (CMC) binder (CMC-g-PAA). The procedure consists of first mixing nano-sized Si and the binders (CMC and PAA), and then coating the slurry on a Cu foil. The carbon network was formed via carbonization of the binders i.e., by a simple heat treatment of the electrode. The carbon network in the electrode is mechanically and electrically robust, which leads to higher electrical conductivity and better mechanical property. This explains its long cycle performance without the addition of a conducting agent (for example, carbon). Therefore, the partially carbonized CMC-g-PAA binder presented in this study represents a new feasible approach to produce Si anodes for use in advanced Li-ion batteries.

Keywords

E1JTC5_2019_v10n2_131_f0002.png 이미지

Fig. 1. a) TGA analysis of the P10 electrode before heat treatment, Schematic diagram of b) grafting of PAA to CMC and c) electrode preparation.

E1JTC5_2019_v10n2_131_f0003.png 이미지

Fig. 2. a) FT-IR spectra of electrodes, b) Raman analysis of electrodes, c) electrode image after adhesion test and d) SBRCMC binder electrode image after adhesion test.

E1JTC5_2019_v10n2_131_f0004.png 이미지

Fig. 3. a) Considered models of CMC-g-PAA and b) FT-IR spectroscopy data derived from DFT calculations for each model

E1JTC5_2019_v10n2_131_f0005.png 이미지

Fig. 4. a) Cycle data, b) rate profile of the P10 electrode, c) rate profile of the R3 electrode and d) Nyquist plot of P10 and R3.

E1JTC5_2019_v10n2_131_f0006.png 이미지

Fig. 5. a), b) Cross-sectional image and c) carbon mapping of the P10 electrode before cycle test; d) cross-sectional image, e) surface image, and f) carbon mapping of the P10 electrode after 1000 cycles at 3000 mA g-1.

E1JTC5_2019_v10n2_131_f0007.png 이미지

Fig. 6. a) Cross-sectional image and element mapping for C; element mapping for b) F, c) P, d) Si of the P10 electrode after 1000 cycles at 3000 mA g-1 and e) cycle data.

E1JTC5_2019_v10n2_131_f0008.png 이미지

Fig. 7. a) Cycle data and b) voltage profiles for different binder ratios in the P10 electrode.

Table 1. Calculated thermodynamic data for model 1 and model 2.

E1JTC5_2019_v10n2_131_t0001.png 이미지

Table 2. Electrical conductivity for different binder ratios measured by a four-point probe.

E1JTC5_2019_v10n2_131_t0002.png 이미지

References

  1. G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, H.-J. Sohn, Energy Environ. Sci, 2011, 4(6), 1986-2002. https://doi.org/10.1039/c0ee00831a
  2. H. Wu, Y. Cui, Nano Today, 2012, 7(5), 414-429. https://doi.org/10.1016/j.nantod.2012.08.004
  3. N. Nitta, F. Wu, J. T. Lee, G. Yushin, Materials Today, 2015, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  4. C.K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat Nanotechnol. 2008, 3, 31-35. https://doi.org/10.1038/nnano.2007.411
  5. S.-H. Ng, J. Wang, D. Wexler, K. Konstatinov, Z.-P Guo, H.-K Liu, Angewandte Chemie, 2006, 45(41) 6896-6899. https://doi.org/10.1002/anie.200601676
  6. D. Mazouzi, Z. Karkar, C. R. Hernandez, P. J. Manero, D. Guyomard, L. Roue, B. Lestriez, J. Power Sources, 2015, 280, 533-549. https://doi.org/10.1016/j.jpowsour.2015.01.140
  7. J. Choi, K. Kim, J. Jeong, K.Y. Cho, M.-H. Ryou, Y.M. Lee, Appl Mater. Interfaces, 2015, 7(27), 14851-14858. https://doi.org/10.1021/acsami.5b03364
  8. D. Chao, X. Xia, J. Liu, Z. Fan, C. F. Ng, J. Lin, H. Zhang, Z.X. Shen, H. J. Fan, Adv. Mater. 2014, 26(33), 5794-5800. https://doi.org/10.1002/adma.201400719
  9. H. Liu, F. Zhang, W. Li, X. Zhang, C.-S. Lee, W. Wang, Y. Tang, Electrochimica Acta, 2015, 167, 132-138. https://doi.org/10.1016/j.electacta.2015.03.151
  10. J. Liu, W. Zhou, L. Lai, H. Yang, S. H. Lim, Y. Zhen, T. Yu, Z. Shen, J. Lin, Nano Energy 2013, 2(5), 726-732. https://doi.org/10.1016/j.nanoen.2012.12.008
  11. G. Chen, L. Yan, H. Luo, S. Guo, Adv. Mater. 2016, 28(35), 7580-7602. https://doi.org/10.1002/adma.201600164
  12. P. Roy, S. K. Srivastava, J. Mater. Chem. A, 2015, 3(6), 2454-2484. https://doi.org/10.1039/C4TA04980B
  13. M. -H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T.-S. Kim, J. -K. Park, H. Lee, J. W. Choi, Adv. Mater, 2013, 25(11), 1571-1576. https://doi.org/10.1002/adma.201203981
  14. Y. Shi, G. Yu, Chem. Mater, 2016, 28(8), 2466-2477. https://doi.org/10.1021/acs.chemmater.5b04879
  15. L. Wei, C. Chen, Z. Hou, H. Wei, Sci. Rep. 2016, 6, article number 19583.
  16. R. Jain, B. K. Paswan, T. K. Mahto, V. Mahto, Egypt. J. Petrol. 2017, 26(4), 875-883. https://doi.org/10.1016/j.ejpe.2015.03.016
  17. S. Pongpiachan, J. Appl. Sci., 2014, 14(22), 2967-2977. https://doi.org/10.3923/jas.2014.2967.2977
  18. N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, M. Winter, Electrochem. Solid-State Lett, 2008, 11(5), A76-A80. https://doi.org/10.1149/1.2888173
  19. T. M. Higgins, S.-H. Park, P. J. King, C. (J.) Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, J. N. Coleman, ACS Nano, 2016, 10(3), 3702-3713. https://doi.org/10.1021/acsnano.6b00218