Fig. 1. Scanning electron microscopy image of the ionic liquid-graphene-titania-Nafion composite film. Scale bar: 500 nm.
Fig. 2. Energy-dispersive X-ray spectroscopy mapping image of the ionic liquid-graphene-titania-Nafion composite. (A) Fluorine (B) Titanium.
Fig. 3. Nyquist plots for the impedance measurements in the presence of 5.0 mM K3Fe(CN)6/K4Fe(CN)6 in 0.05 M phosphate buffer (pH 7.0) at a bare GCE (□), titania-Nafion (○), ionic liquid-titania-Nafion (◆), ionic liquid-graphenetitania-Nafion (▲) composite modified glassy carbon electrode.
Fig. 4. Linear sweep voltammograms of 0.5 μM capsaicin at a titania-Nafion (a), ionic liquid-titania-Nafion (b), graphene-titania-Nafion (c) and ionic liquid-graphenetitania-Nafion (d) composite modified glassy carbon electrode in 0.04 M Britton-Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.
Fig. 5. Oxidation current of 10 μM capsaicin obtained at glassy carbon electrodes modified with titania-Nafion composites incorporated with 1-butyl-3-methylimidazolium (A), 1-hexyl-3-methylimidazolium (B), 1-ethyl-3-methylimidazolium (C), 1,3-dimethoxy-2-methylimidazolium (D) and 1-benzyl-3-methylimidazolium (E) hexafluorophosphate in 0.05 M pH 7.0 phosphate buffer at a scan rate was 100 mV/s.
Scheme 1. Reaction mechanism of the oxidation of capsaicin, and the chemical structures of the ionic liquids used: 1-butyl-3-methylimidazolium (A), 1-hexyl-3-methylimidazolium (B), 1-ethyl-3-methylimidazolium (C), 1,3-dimethoxy-2-methylimidazolium (D) and 1-benzyl-3-methylimidazolium (E) hexafluorophosphate.
Fig. 6. Effect of the accumulation time on the oxidation peak current of 0.1 μM capsaicin at the graphene-titania-Nafion (dashed line) and ionic liquid-graphene-titania-Nafion (solid line) composite-modified electrode in 0.04 M Britton- Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.
Fig. 7. Effect of concentration of ionic liquid on the oxidation peak current of 100 μM capsaicin at the composite-modified electrode in 0.04 M Britton-Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.
Fig. 8. Effect of amount of graphene on the oxidation peak current of 100 μM capsaicin at the composite-modified electrode in 0.04 M Britton-Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.
Fig. 9. Calibration curves for capsaicin obtained at the composite-modified electrode in the concentration of 10 μM, 1 μM, 0.5 μM, 0.1 μM, 0.05 μM, and 0.03 μM. Insert (A): calibration curves for capsaicin obtained at ionic liquidgraphene-titania-Nafion (solid line) and graphene-titania-Nafion (dashed line) composite-modified electrode in the concentration range from 0.03 μM to 1.0 μM. (B): Linear sweep voltammograms of buffer (solid line) and 0.03 μM capsaicin (dotted line) at ionic liquid-graphene-titania-Nafion composite.
Table 1. Comparison of the present capsaicin sensor with different reported methods.
Table 2. Recovery of capsaicin spiked in Korean hot pepper (Chungyang pepper) solution.
References
- I. Perucka, M. Materska, Innov. Food Sci. Emerg. Technol., 2001, 2(3), 189-192. https://doi.org/10.1016/S1466-8564(01)00022-4
- S. Kosuge, M. Furuta, Agric. Biol. Chem., 1970, 34(2), 248-256. https://doi.org/10.1271/bbb1961.34.248
- Z.A.A. Othman, Y.B.H. Ahmed, M.A. Habila, A.A. Ghafar, Molecules, 2011, 16(10), 8919-8929. https://doi.org/10.3390/molecules16108919
- M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, Nature, 1997, 389(6653), 816. https://doi.org/10.1038/39807
- E.P. Randviir, J.P. Metters, J. Stainton, C.E. Banks, Analyst, 2013, 138(10), 2970-2981. https://doi.org/10.1039/c3an00368j
- C. Rains, H.M. Bryson, Drugs Aging, 1995, 7(4), 317-328. https://doi.org/10.2165/00002512-199507040-00007
- C. Ganguly, Asian Pacific Journal of Cancer Prevention, 2010, 11(1), 25-8.
- J.A. Negulesco, R.M. Young, P. Ki, Artery, 1985, 12(5), 301-311.
- R.K. Kempaiah, H. Manjunatha, K. Srinivasan, Mol. Cell. Biochem., 2005, 275(1-2), 7-13. https://doi.org/10.1007/s11010-005-7643-3
- T. Kawada, K. Hagihara, K. Iwai, J. Nutr., 1986, 116(7), 1272-1278. https://doi.org/10.1093/jn/116.7.1272
- D.E. Henderson, A.M. Slickman, S.K. Henderson, J. Agric. Food Chem., 1999, 47(7), 2563-2570. https://doi.org/10.1021/jf980949t
- A. Rosa, M. Deiana, V. Casu, S. Paccagnini, G. Appendino, M. Ballero, M.A. Dessi, J. Agric. Food Chem., 2002, 50(25), 7396-7401. https://doi.org/10.1021/jf020431w
- W.L. Scoville, J. Pharm. Sci., 1912, 1(5), 453-454.
- S.H. Choi, B.S. Suh, E. Kozukue, N. Kozukue, C.E. Levin, M. Friedman, J. Agric. Food Chem., 2006, 54(24), 9024-9031. https://doi.org/10.1021/jf061157z
- A. Pena-Alvarez, E. Ramirez-Maya, L.. Alvarado-Suarez, J. Chromatogr. A, 2009, 1216(14), 2843-2847. https://doi.org/10.1016/j.chroma.2008.10.053
- Z. A. A. Othman, Y. B. H. Ahmed, M. A. Habila, A. A. Ghafar, Molecules, 2011, 16(10), 8919-8929. https://doi.org/10.3390/molecules16108919
- E.K. Johnson, H.C. Thompson, M.C. Bowman, J. Agric. Food Chem., 1982, 30(2), 324-329. https://doi.org/10.1021/jf00110a027
- K. Bajaj, G. Kaur, Microchim. Acta, 1979, 71(1-2), 81-86. https://doi.org/10.1007/BF01197523
- H.A.A. Gibbs, L.W. O'Garro, Hortscience, 2004, 39(1), 132-135. https://doi.org/10.21273/HORTSCI.39.1.132
- L.H. Liu, X.G. Chen, J.L. Liu, X.X. Deng, W.J. Duan, S.Y. Tan, Food Chem., 2010, 119(3), 1228-1232. https://doi.org/10.1016/j.foodchem.2009.08.045
- R.T. Kachoosangi, G.G. Wildgoose, R.G. Compton, Analyst, 2008, 133(7), 888-895. https://doi.org/10.1039/b803588a
- T. Mpanza, M.I. Sabela, S.S. Mathenjwa, S. Kanchi, K. Bisetty, Anal. Lett., 2014, 47(17), 2813-2828. https://doi.org/10.1080/00032719.2014.924010
- Y. Wang, B.B. Huang, W.L. Dai, J.S. Ye, B. Xu, J. Electroanal. Chem., 2016, 776, 93-100. https://doi.org/10.1016/j.jelechem.2016.06.031
- A.K. Baytak, M. Aslanoglu, Food Chem., 2017, 228, 152-157. https://doi.org/10.1016/j.foodchem.2017.01.161
- Y. Wang, B.B. Huang, W.L. Dai, B. Xu, T.L. Wu, J.P. Ye, J.S. Ye, Anal. Sci., 2017, 33(7), 793-799. https://doi.org/10.2116/analsci.33.793
- D.H. Kim, W.Y. Lee, J. Electroanal. Chem., 2016, 776, 74-81. https://doi.org/10.1016/j.jelechem.2016.06.035
- B.M. Quinn, Z.F. Ding, R. Moulton, A.J. Bard, Langmuir, 2002, 18(5), 1734-1742. https://doi.org/10.1021/la011458x
- M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta, 2006, 51(26), 5567-5580. https://doi.org/10.1016/j.electacta.2006.03.016
- W. Sun, P. Qin, R. Zhao, K. Jiao, Talanta, 2010, 80(5), 2177-2181. https://doi.org/10.1016/j.talanta.2009.11.026
- T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science, 2003, 300(5628), 2072-2074. https://doi.org/10.1126/science.1082289
- A. Abo-Hamad, M.A. AlSaadi, M. Hayyan, I. Juneidi, M.A. Hashim, Electrochim. Acta, 2016, 193, 321-343. https://doi.org/10.1016/j.electacta.2016.02.044
- X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochim. Acta, 2012, 80, 346-353. https://doi.org/10.1016/j.electacta.2012.07.041
- S. Hu, Y.H. Wang, X.Z. Wang, L. Xu, J. Xiang, W. Sun, Sens. Actuators B Chem., 2012, 168, 27-33. https://doi.org/10.1016/j.snb.2011.12.108
- C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Biosens. Bioelectron, 2010, 25(6), 1504-1508. https://doi.org/10.1016/j.bios.2009.11.009
- Q. Zhang, S. Wu, L. Zhang, J. Lu, F. Verproot, Y. Liu, Z. Xing, J. Li, X.M. Song, Biosens. Bioelectron, 2011, 26(5), 2632-2637. https://doi.org/10.1016/j.bios.2010.11.024
- J. Jang, D.H. Kim, W.Y. Lee, Anal. Lett., 2016, 49(13), 2018-2030. https://doi.org/10.1080/00032719.2015.1134560
- J. Fan, H. Guo, G. Liu, P. Peng, Anal. Chim. Acta 2007, 585(1), 134-138. https://doi.org/10.1016/j.aca.2006.12.026
- C.Y. Lin, F.Y. Shen, G.W. Lian, K.L. Chien, F.C. Sung, P.C. Chen, T.C. Su, Atherosclerosis, 2015, 241(2), 657-663. https://doi.org/10.1016/j.atherosclerosis.2015.06.038
- W. Zhang, T. Yang, X. Zhuang, Z. Guo, K. Jiao, Biosens. Bioelectron. 2009, 24(8), 2417-2422. https://doi.org/10.1016/j.bios.2008.12.024
- Y. Yardim, Electroanalysis, 2011, 23(10), 2491-2497. https://doi.org/10.1002/elan.201100275