DOI QR코드

DOI QR Code

Electrochemical Determination of Capsaicin by Ionic Liquid Composite-Modified Electrode

  • Received : 2018.11.04
  • Accepted : 2018.12.05
  • Published : 2019.06.30

Abstract

An electrochemical detection method for capsaicin has been developed using ionic liquid (IL) doped graphene-titania-Nafion composite-modified electrode. The combination of IL (1-hexyl-3-methylimidazolium with hexafluorophosphate counter ion) in the composite-modified electrode resulted in a significantly increased electrochemical response for capsaicin compared to that obtained at the corresponding electrode without IL. The increased electrochemical signal could be ascribed to the decreased electron transfer resistance through the composite film and also to the effective accumulation of capsaicin on the electrode surface due to ${\pi}-{\pi}$ interaction of the imidazole groups of IL with the aromatic rings of capsaicin. The present IL composite-modified electrode can detect capsaicin with a concentration range from $3.0{\times}10^{-8}M$ to $1.0{\times}10^{-5}M$ with a detection limit of $3.17{\times}10^{-9}M$ (S/N = 3). The present sensor showed good reproducibility (RSD = 3.2%).

Keywords

E1JTC5_2019_v10n2_177_f0001.png 이미지

Fig. 1. Scanning electron microscopy image of the ionic liquid-graphene-titania-Nafion composite film. Scale bar: 500 nm.

E1JTC5_2019_v10n2_177_f0002.png 이미지

Fig. 2. Energy-dispersive X-ray spectroscopy mapping image of the ionic liquid-graphene-titania-Nafion composite. (A) Fluorine (B) Titanium.

E1JTC5_2019_v10n2_177_f0003.png 이미지

Fig. 3. Nyquist plots for the impedance measurements in the presence of 5.0 mM K3Fe(CN)6/K4Fe(CN)6 in 0.05 M phosphate buffer (pH 7.0) at a bare GCE (□), titania-Nafion (○), ionic liquid-titania-Nafion (◆), ionic liquid-graphenetitania-Nafion (▲) composite modified glassy carbon electrode.

E1JTC5_2019_v10n2_177_f0004.png 이미지

Fig. 4. Linear sweep voltammograms of 0.5 μM capsaicin at a titania-Nafion (a), ionic liquid-titania-Nafion (b), graphene-titania-Nafion (c) and ionic liquid-graphenetitania-Nafion (d) composite modified glassy carbon electrode in 0.04 M Britton-Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.

E1JTC5_2019_v10n2_177_f0005.png 이미지

Fig. 5. Oxidation current of 10 μM capsaicin obtained at glassy carbon electrodes modified with titania-Nafion composites incorporated with 1-butyl-3-methylimidazolium (A), 1-hexyl-3-methylimidazolium (B), 1-ethyl-3-methylimidazolium (C), 1,3-dimethoxy-2-methylimidazolium (D) and 1-benzyl-3-methylimidazolium (E) hexafluorophosphate in 0.05 M pH 7.0 phosphate buffer at a scan rate was 100 mV/s.

E1JTC5_2019_v10n2_177_f0006.png 이미지

Scheme 1. Reaction mechanism of the oxidation of capsaicin, and the chemical structures of the ionic liquids used: 1-butyl-3-methylimidazolium (A), 1-hexyl-3-methylimidazolium (B), 1-ethyl-3-methylimidazolium (C), 1,3-dimethoxy-2-methylimidazolium (D) and 1-benzyl-3-methylimidazolium (E) hexafluorophosphate.

E1JTC5_2019_v10n2_177_f0007.png 이미지

Fig. 6. Effect of the accumulation time on the oxidation peak current of 0.1 μM capsaicin at the graphene-titania-Nafion (dashed line) and ionic liquid-graphene-titania-Nafion (solid line) composite-modified electrode in 0.04 M Britton- Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.

E1JTC5_2019_v10n2_177_f0008.png 이미지

Fig. 7. Effect of concentration of ionic liquid on the oxidation peak current of 100 μM capsaicin at the composite-modified electrode in 0.04 M Britton-Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.

E1JTC5_2019_v10n2_177_f0009.png 이미지

Fig. 8. Effect of amount of graphene on the oxidation peak current of 100 μM capsaicin at the composite-modified electrode in 0.04 M Britton-Robinson buffer (pH 1.0) at a scan rate of 100 mV/s.

E1JTC5_2019_v10n2_177_f0010.png 이미지

Fig. 9. Calibration curves for capsaicin obtained at the composite-modified electrode in the concentration of 10 μM, 1 μM, 0.5 μM, 0.1 μM, 0.05 μM, and 0.03 μM. Insert (A): calibration curves for capsaicin obtained at ionic liquidgraphene-titania-Nafion (solid line) and graphene-titania-Nafion (dashed line) composite-modified electrode in the concentration range from 0.03 μM to 1.0 μM. (B): Linear sweep voltammograms of buffer (solid line) and 0.03 μM capsaicin (dotted line) at ionic liquid-graphene-titania-Nafion composite.

Table 1. Comparison of the present capsaicin sensor with different reported methods.

E1JTC5_2019_v10n2_177_t0001.png 이미지

Table 2. Recovery of capsaicin spiked in Korean hot pepper (Chungyang pepper) solution.

E1JTC5_2019_v10n2_177_t0002.png 이미지

References

  1. I. Perucka, M. Materska, Innov. Food Sci. Emerg. Technol., 2001, 2(3), 189-192. https://doi.org/10.1016/S1466-8564(01)00022-4
  2. S. Kosuge, M. Furuta, Agric. Biol. Chem., 1970, 34(2), 248-256. https://doi.org/10.1271/bbb1961.34.248
  3. Z.A.A. Othman, Y.B.H. Ahmed, M.A. Habila, A.A. Ghafar, Molecules, 2011, 16(10), 8919-8929. https://doi.org/10.3390/molecules16108919
  4. M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, Nature, 1997, 389(6653), 816. https://doi.org/10.1038/39807
  5. E.P. Randviir, J.P. Metters, J. Stainton, C.E. Banks, Analyst, 2013, 138(10), 2970-2981. https://doi.org/10.1039/c3an00368j
  6. C. Rains, H.M. Bryson, Drugs Aging, 1995, 7(4), 317-328. https://doi.org/10.2165/00002512-199507040-00007
  7. C. Ganguly, Asian Pacific Journal of Cancer Prevention, 2010, 11(1), 25-8.
  8. J.A. Negulesco, R.M. Young, P. Ki, Artery, 1985, 12(5), 301-311.
  9. R.K. Kempaiah, H. Manjunatha, K. Srinivasan, Mol. Cell. Biochem., 2005, 275(1-2), 7-13. https://doi.org/10.1007/s11010-005-7643-3
  10. T. Kawada, K. Hagihara, K. Iwai, J. Nutr., 1986, 116(7), 1272-1278. https://doi.org/10.1093/jn/116.7.1272
  11. D.E. Henderson, A.M. Slickman, S.K. Henderson, J. Agric. Food Chem., 1999, 47(7), 2563-2570. https://doi.org/10.1021/jf980949t
  12. A. Rosa, M. Deiana, V. Casu, S. Paccagnini, G. Appendino, M. Ballero, M.A. Dessi, J. Agric. Food Chem., 2002, 50(25), 7396-7401. https://doi.org/10.1021/jf020431w
  13. W.L. Scoville, J. Pharm. Sci., 1912, 1(5), 453-454.
  14. S.H. Choi, B.S. Suh, E. Kozukue, N. Kozukue, C.E. Levin, M. Friedman, J. Agric. Food Chem., 2006, 54(24), 9024-9031. https://doi.org/10.1021/jf061157z
  15. A. Pena-Alvarez, E. Ramirez-Maya, L.. Alvarado-Suarez, J. Chromatogr. A, 2009, 1216(14), 2843-2847. https://doi.org/10.1016/j.chroma.2008.10.053
  16. Z. A. A. Othman, Y. B. H. Ahmed, M. A. Habila, A. A. Ghafar, Molecules, 2011, 16(10), 8919-8929. https://doi.org/10.3390/molecules16108919
  17. E.K. Johnson, H.C. Thompson, M.C. Bowman, J. Agric. Food Chem., 1982, 30(2), 324-329. https://doi.org/10.1021/jf00110a027
  18. K. Bajaj, G. Kaur, Microchim. Acta, 1979, 71(1-2), 81-86. https://doi.org/10.1007/BF01197523
  19. H.A.A. Gibbs, L.W. O'Garro, Hortscience, 2004, 39(1), 132-135. https://doi.org/10.21273/HORTSCI.39.1.132
  20. L.H. Liu, X.G. Chen, J.L. Liu, X.X. Deng, W.J. Duan, S.Y. Tan, Food Chem., 2010, 119(3), 1228-1232. https://doi.org/10.1016/j.foodchem.2009.08.045
  21. R.T. Kachoosangi, G.G. Wildgoose, R.G. Compton, Analyst, 2008, 133(7), 888-895. https://doi.org/10.1039/b803588a
  22. T. Mpanza, M.I. Sabela, S.S. Mathenjwa, S. Kanchi, K. Bisetty, Anal. Lett., 2014, 47(17), 2813-2828. https://doi.org/10.1080/00032719.2014.924010
  23. Y. Wang, B.B. Huang, W.L. Dai, J.S. Ye, B. Xu, J. Electroanal. Chem., 2016, 776, 93-100. https://doi.org/10.1016/j.jelechem.2016.06.031
  24. A.K. Baytak, M. Aslanoglu, Food Chem., 2017, 228, 152-157. https://doi.org/10.1016/j.foodchem.2017.01.161
  25. Y. Wang, B.B. Huang, W.L. Dai, B. Xu, T.L. Wu, J.P. Ye, J.S. Ye, Anal. Sci., 2017, 33(7), 793-799. https://doi.org/10.2116/analsci.33.793
  26. D.H. Kim, W.Y. Lee, J. Electroanal. Chem., 2016, 776, 74-81. https://doi.org/10.1016/j.jelechem.2016.06.035
  27. B.M. Quinn, Z.F. Ding, R. Moulton, A.J. Bard, Langmuir, 2002, 18(5), 1734-1742. https://doi.org/10.1021/la011458x
  28. M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta, 2006, 51(26), 5567-5580. https://doi.org/10.1016/j.electacta.2006.03.016
  29. W. Sun, P. Qin, R. Zhao, K. Jiao, Talanta, 2010, 80(5), 2177-2181. https://doi.org/10.1016/j.talanta.2009.11.026
  30. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science, 2003, 300(5628), 2072-2074. https://doi.org/10.1126/science.1082289
  31. A. Abo-Hamad, M.A. AlSaadi, M. Hayyan, I. Juneidi, M.A. Hashim, Electrochim. Acta, 2016, 193, 321-343. https://doi.org/10.1016/j.electacta.2016.02.044
  32. X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochim. Acta, 2012, 80, 346-353. https://doi.org/10.1016/j.electacta.2012.07.041
  33. S. Hu, Y.H. Wang, X.Z. Wang, L. Xu, J. Xiang, W. Sun, Sens. Actuators B Chem., 2012, 168, 27-33. https://doi.org/10.1016/j.snb.2011.12.108
  34. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Biosens. Bioelectron, 2010, 25(6), 1504-1508. https://doi.org/10.1016/j.bios.2009.11.009
  35. Q. Zhang, S. Wu, L. Zhang, J. Lu, F. Verproot, Y. Liu, Z. Xing, J. Li, X.M. Song, Biosens. Bioelectron, 2011, 26(5), 2632-2637. https://doi.org/10.1016/j.bios.2010.11.024
  36. J. Jang, D.H. Kim, W.Y. Lee, Anal. Lett., 2016, 49(13), 2018-2030. https://doi.org/10.1080/00032719.2015.1134560
  37. J. Fan, H. Guo, G. Liu, P. Peng, Anal. Chim. Acta 2007, 585(1), 134-138. https://doi.org/10.1016/j.aca.2006.12.026
  38. C.Y. Lin, F.Y. Shen, G.W. Lian, K.L. Chien, F.C. Sung, P.C. Chen, T.C. Su, Atherosclerosis, 2015, 241(2), 657-663. https://doi.org/10.1016/j.atherosclerosis.2015.06.038
  39. W. Zhang, T. Yang, X. Zhuang, Z. Guo, K. Jiao, Biosens. Bioelectron. 2009, 24(8), 2417-2422. https://doi.org/10.1016/j.bios.2008.12.024
  40. Y. Yardim, Electroanalysis, 2011, 23(10), 2491-2497. https://doi.org/10.1002/elan.201100275