DOI QR코드

DOI QR Code

Studies on Methanolic Extract of Lepidagathis keralensis as Green Corrosion Inhibitor for Mild Steel in 1M HCl

  • Leena, Palakkal (Department of Post Graduate Studies and Research in Chemistry, Sir Syed College) ;
  • Zeinul Hukuman, N.H. (Department of Post Graduate Studies and Research in Chemistry, Sir Syed College) ;
  • Biju, A.R. (Department of Post Graduate Studies and Research in Chemistry, Sir Syed College) ;
  • Jisha, Mullapally (Department of Post Graduate Studies and Research in Chemistry, Sir Syed College)
  • Received : 2018.06.01
  • Accepted : 2019.01.02
  • Published : 2019.06.30

Abstract

The methanolic extracts of the leaves and stem of the plant Lepidagathis keralensis were evaluated for anticorrosion behavior against mild steel in 1M HCl. Corrosion inhibition studies were done by gravimetric method, electrochemical impedance spectroscopy and potentiodynamic polarization methods. Surface morphology of mild steel in the presence and absence of inhibitors were studied using SEM analysis. UV-Vis studies were also done to evaluate the mechanism of inhibition. Both the extracts showed good inhibition efficiency which increased with increase in concentration of the inhibitor and decreased with increase in temperature. The mechanism of inhibition was explained by adsorption which obeyed Langmuir adsorption isotherm. Thermodynamic calculations revealed a combination of both physisorption and chemisorption of the inhibitor on the surface of mild steel. The extracts behaved as mixed type inhibitors as determined by polarization studies. Quantum chemical studies on Phenoxyethene, one of the major components in the leaf extract of the plant was also carried out to support the experimental results.

Keywords

E1JTC5_2019_v10n2_231_f0001.png 이미지

Fig. 1. Corrosion inhibition efficiencies of different concentrations of the extracts of leaf and stem of Lepidagathis keralensis as determined by weight loss method.

E1JTC5_2019_v10n2_231_f0002.png 이미지

Fig. 2. Nyquist plots obtained for mild steel in 1M HCl at 303K in the presence and absence of a) Lepidagathis keralensis Leaf extract b) Lepidagathis keralensis Stem extract.

E1JTC5_2019_v10n2_231_f0003.png 이미지

Fig. 3. Tafel polarization curves for mild steel in 1M HCl at 303K in the presence and absence of a) Lepidagathis keralensis Leaf extract b) Lepidagathis keralensis Stem extract.

E1JTC5_2019_v10n2_231_f0004.png 이미지

Fig. 4. Langmuir adsorption isotherm at different temperatures for mild steel in 1M HCl with different concentrations of a) Lepidagathis keralensis Leaf extract b) Lepidagathis keralensis Stem extract.

E1JTC5_2019_v10n2_231_f0005.png 이미지

Fig. 5. Plot of ln Kads against 1/T for a) Lepidagathis keralensis Leaf extract b) Lepidagathis keralensis Stem extract.

E1JTC5_2019_v10n2_231_f0006.png 이미지

Fig. 6. UV-Vis absorption spectra of solutions of A) extracts in 1M HCl before mild steel immersion, B) extracts in 1M HCl after mild steel corrosion and C) 1M HCl without extracts after mild steel corrosion for Lepidagathis keralensis leaf extracts.

E1JTC5_2019_v10n2_231_f0007.png 이미지

Fig. 7. UV-Vis absorption spectra of solutions of A) extracts in 1M HCl before mild steel immersion, B) extracts in 1M HCl after mild steel corrosion and C) 1M HCl without extracts after mild steel corrosion for Lepidagathis keralensis stem extracts.

E1JTC5_2019_v10n2_231_f0009.png 이미지

Fig. 8b. FT-IR spectra of A) stem extract and B) the film formed on the mild steel surface after immersion in 1M HCl solution containing stem extract.

E1JTC5_2019_v10n2_231_f0011.png 이미지

Fig. 8a. FT-IR spectra of A) leaf extract and B) the film formed on the mild steel surface after immersion in 1M HCl solution containing leaf extract.

E1JTC5_2019_v10n2_231_f0012.png 이미지

Fig. 9. SEM images of a) mild steel before corrosion b) mild steel in 1M HCl in the absence of inhibitor b) mild steel in 1M HCl in the presence of 200ppm of Lepidagathis keralensis leaf extract c) mild steel in 1M HCl in the presence of 200ppm of Lepidagathis keralensis stem extract.

E1JTC5_2019_v10n2_231_f0013.png 이미지

Fig. 10. a) optimized geometry b) HOMO and c) LUMO of Phenoxyethene.

Table 1. Corrosion parameters for mild steel in 1 M HCl obtained from weight loss measurements at different temperatures in the absence and presence of inhibitor.

E1JTC5_2019_v10n2_231_t0001.png 이미지

Table 2. Impedance parameters obtained for Nyquist plots for mild steel corrosion in 1M HCl at various concentrations of leaf and stem extracts as inhibitor.

E1JTC5_2019_v10n2_231_t0002.png 이미지

Table 3. Polarization data for mild steel corrosion in 1M HCl at various concentrations of leaf and stem extracts as inhibitor.

E1JTC5_2019_v10n2_231_t0003.png 이미지

Table 4. Thermodynamic parameters calculated for the adsorption of leaf and stem extracts as inhibitor on mild steel surface in 1M HCl at different temperatures.

E1JTC5_2019_v10n2_231_t0004.png 이미지

Table 6. Quantum chemical parameters calculated for Phenoxyethene

E1JTC5_2019_v10n2_231_t0005.png 이미지

References

  1. D. Ben Hmamou, R. Salghi, A. Zarrouk, H. Zarrok, R. Touzani, B. Hammouti and A. El Assyry, J. Environ. Chem. Eng., 2015, 3(3), 2031-2041. https://doi.org/10.1016/j.jece.2015.03.018
  2. K.K. Anupama, K. Ramya, K.M. Shainy and A. Joseph, Mater. Chem. Phys., 2015, 167, 28-41. https://doi.org/10.1016/j.matchemphys.2015.09.013
  3. S. Leelavathi, R. Rajalakshmi, J. Mater. Environ. Sci., 2013, 4(5), 625-638.
  4. H.S. Zaferani, M. Sharifi, D. Zaarei and M.R. Shishesaz, J. Environ. Chem. Eng., 2013, 1(4), 652-657. https://doi.org/10.1016/j.jece.2013.09.019
  5. L. R.Chauhan, G. Gunasekaran, Corros. Sci., 2007, 49(3), 1143-1161. https://doi.org/10.1016/j.corsci.2006.08.012
  6. C. Rahal, M. Masmoudi, R. Abdelhedi, R. Sabot, M. Jeannin, M. Bouaziz and P. Refait, J. Electroanal. Chem., 2016, 769, 53-61. https://doi.org/10.1016/j.jelechem.2016.03.010
  7. D. Prabhu and P. Rao, J. Environ. Chem. Eng., 2013, 1(4), 676-683. https://doi.org/10.1016/j.jece.2013.07.004
  8. H. Cang, Z. Fei, J. Shao, W. Shi and Q. Xu, Int. J. Electrochem. Sci., 2013, 8(1), 720-734.
  9. L. Nnanna, G. Nnanna, J. Nnakaife, N. Ekekwe and P. Eti, Int. J. Mater. Chem., 2016, 6(1), 12-18.
  10. J. K. Odusote and O. M. Ajayi, J. Electrochem. Sci. Technol., 2013, 4(2), 81-87. https://doi.org/10.5229/JECST.2013.4.2.81
  11. P.V. Madhusoodanan and N.Singh, Kew Bull., 1992, 47(2), 301-303. https://doi.org/10.2307/4110674
  12. M. C. Divakar, S. Sandhya, K. R. Vinod, A. P. Razik, K. K. Ranjimol and S. Mohan, Int. J. Drug Formul. Res., 2010, 1(1), 12-53.
  13. S. K. Prasad, Doctoral thesis, 2012, Kannur University, Kerala, 660-661.
  14. P. Leena, N.H.Z. Hukuman, M. Jisha, World J. Pharm. Res., 2016, 5(12), 937-948.
  15. A. El Bribri, M. Tabyaoui, B. Tabyaoui, H. El Attari and F. Bentiss, Mater. Chem. Phys., 2013, 141(1), 240-247. https://doi.org/10.1016/j.matchemphys.2013.05.006
  16. L. Palakkal, N.H.Z. Hukuman and J. Mullappally, J. Appl. Pharm. Sci., 2017, 7(06), 182-189.
  17. L.H. Madkour, Int. J. Ind. Chem., 2015, 6(3), 165-184. https://doi.org/10.1007/s40090-015-0039-7
  18. S.K. Saha and P. Banerjee, RSC Adv., 2015, 5(87), 71120-71130. https://doi.org/10.1039/C5RA15173B
  19. B.M. Prasanna, B.M. Praveen, N. Hebbar, T. V Venkatesha and H.C. Tandon, Int. J. Ind. Chem., 2016, 7(1), 9-19. https://doi.org/10.1007/s40090-015-0064-6
  20. S.K. Shukla and E.E. Ebenso, Int. J. Electrochem. Sci., 2011, 6(8), 3277-3291.
  21. D.K. Yadav and M.A. Quraishi, Ind. Eng. Chem. Res., 2012, 51(46), 14966-14979. https://doi.org/10.1021/ie301840y
  22. M. Mobin, S. Zehra and R. Aslam, RSC Adv., 2016, 6(7), 5890-5902. https://doi.org/10.1039/C5RA24630J
  23. K.F. Khaled, Electrochim. Acta., 2010, 55(22), 6523-6532. https://doi.org/10.1016/j.electacta.2010.06.027
  24. P. Kalaiselvi, S. Chellammal, S. Palanichamy and G. Subramanian, Mater. Chem. Phys., 2010, 120(2-3), 643-648. https://doi.org/10.1016/j.matchemphys.2009.12.015
  25. I.B. de Barros, M.A.A. Kappel, P.M. dos Santos, V.F. da Veiga Junior, E. D'Elia and I.N. Bastos, Mater. Res, 2016, 19(1), 187-194. https://doi.org/10.1590/1980-5373-MR-2015-0494
  26. K.K. Anupama, K. Ramya, K.M. Shainy and A. Joseph, Mater. Chem. Phys., 2015, 167, 28-41. https://doi.org/10.1016/j.matchemphys.2015.09.013
  27. A.A. Al-Amiery, A.A.H. Kadhum, A.H.M. Alobaidy, A.B. Mohamad and P.S. Hoon, Materials, 2014, 7(2), 662-672. https://doi.org/10.3390/ma7020662
  28. K.P. Vinod Kumar, M. Sankara Narayanan Pillai and G. Rexin Thusnavis, J. Mater. Environ. Sci., 2010, 1(2), 119-128.
  29. S. Paul and I. Koley, J. Bio- Tribo-Corrosion., 2016, 2(2), 6. https://doi.org/10.1007/s40735-016-0035-2
  30. R. Mohan, K. Ramya, K.K. Anupama and A. Joseph, J. Mol. Liq., 2016, 220, 707-717. https://doi.org/10.1016/j.molliq.2016.04.113
  31. G. Khan, K.M.S. Newaz, W.J. Basirun, H.B.M. Ali, F.L. Faraj and G.M. Khan, Int. J. Electrochem. Sci., 2015, 10(8), 6120-6134.
  32. Zarrouk, B. Hammouti, H. Zarrok, S.S. Al-Deyab and M. Messali, Int. J. Electrochem. Sci., 2011, 6, 6261-6274
  33. W.Durnie, R. De Marco, A.Jefferson and B. Kinsella, J. Electrochem. Soc., 1999, 146(5), 1751-1756. https://doi.org/10.1149/1.1391837
  34. N.A. Odewunmi, S.A. Umoren and Z.M. Gasem, J. Environ. Chem. Eng., 2015, 3(1), 286-296. https://doi.org/10.1016/j.jece.2014.10.014
  35. S.A. Umoren and M.M. Solomon, J. Environ. Chem. Eng., 2017, 5(1), 246-273. https://doi.org/10.1016/j.jece.2016.12.001
  36. Y. Abboud, A. Abourriche, T. Ainane, M. Charrouf, A. Bennamara, O. Tanane and B. Hammouti, Chem. Eng. Commun., 2009, 197(7), 788-800.
  37. S. A.Umoren, Eduok, M. M.Solomon, A. P. Udoh, Arab. J. Chem., 2016, 9, S209-S224. https://doi.org/10.1016/j.arabjc.2011.03.008
  38. P. O. Ameh, A. M. Kolo, A.Ahmed, I. K. Ajanaku, J. Ind. Environ. Chem., 2017, 1(1), 15-21.
  39. M. A.Deyab, M. M. Osman,, A. E. ElkholyEl-Taib, F. Heakal, RSC Adv. 2017, 7, 45241-45251. https://doi.org/10.1039/C7RA07979F
  40. G. Gece, Corros. Sci., 2008, 50(11), 2981-2992. https://doi.org/10.1016/j.corsci.2008.08.043
  41. Y.E. Louadi, F. Abrigach, A. Bouyanzer, R. Touzani, A. El Assyry, A. Zarrouk and B. Hammouti, Port. Electrochim. Acta, 2017, 35(3), 159-178. https://doi.org/10.4152/pea.201703159
  42. K.F. Khaled, Electrochim. Acta. 2010, 55(22), 6523-6532. https://doi.org/10.1016/j.electacta.2010.06.027
  43. J. Bhawsar, P.K. Jain and P. Jain, Alexandria Eng. J., 2015, 54(3), 769-775. https://doi.org/10.1016/j.aej.2015.03.022
  44. A. Ousslim, A. Chetouani, B. Hammouti, K. Bekkouch, S. S. Al-Deyab, A. Aouniti and A. Elidrissi, Int. J. Electrochem. Sci., 2013, 8, 5980-6004.
  45. N. Soraya, D. Rayenne, M.Boulanouar, O. Rabah, Port. Electrochim. Acta, 2018, 36 (1), 23-34. https://doi.org/10.4152/pea.201801023
  46. Z. Rouifi, M. El Faydy, H. About, F. Benhiba, H. Ramsis, M. Boudalia, H. Zarrok, R. Touir, M.El.M Rabet, H. Oudda, A. Guenbour and B. Lakhrissi, J. Mater. Environ. Sci., 2018, 9(2), 453-465.
  47. R.G. Parr and R.G. Pearson, J. Am. Chem. Soc., 1983, 105(26), 7512-7516. https://doi.org/10.1021/ja00364a005
  48. K.K. Anupama, K. Ramya, A. Joseph, J. Mol. Liq., 2016, 216, 146-155. https://doi.org/10.1016/j.molliq.2016.01.019
  49. B. Adindu, C. Ogukwe, F. Eze and E. Oguzie, J. Electrochem. Sci. Technol., 2016, 7(4), 251-262. https://doi.org/10.5229/JECST.2016.7.4.251