DOI QR코드

DOI QR Code

Fabrication of Antimicrobial Wound Dressings Using Silver-Citrate Nanorods and Analysis of Their Wound-Healing Efficacy

  • Park, Yong Jin (Department of Medicine, College of Medicine, Chosun University) ;
  • Jeong, Jisu (Department of Chemistry, College of Natural Science, Chosun University) ;
  • Kim, Jae Seok (Department of Chemistry, College of Natural Science, Chosun University) ;
  • Choi, Dong Soo (Post-Harvest Engineering Division, National Institute of Agricultural Sciences) ;
  • Cho, Goang-Won (Department of Biology, College of Natural Science, Chosun University) ;
  • Park, Jin Seong (Department of Materials Engineering, College of Engineering, Chosun University) ;
  • Lim, Jong Kuk (Department of Chemistry, College of Natural Science, Chosun University)
  • Received : 2019.05.23
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Staphylococcus epidermidis is well-known not only as an innocuous normal flora species commonly isolated from human skin, but also as an important bacterial species to keep skin healthy, because this species can protect the human skin from pathogenic microorganisms. However, S. epidermidis turns into a potential pathogen in damaged skin, because these bacteria can easily form a biofilm on the wound area and provide antimicrobial resistance to other microorganisms embedded in the biofilm. Thus, it is important to kill S. epidermidis in the early stage of wound treatment and block the formation of biofilms in advance. In the present study, hydrogel wound dressings were fabricated using polyvinyl alcohol/polyethylene glycol containing silver citrate nanorods, which have been proven to have strong antimicrobial activity, especially against S. epidermidis, and their wound-healing efficacy was investigated in vivo using a rat experiment.

Keywords

GCOGBD_2019_v12n2_47_f0001.png 이미지

Fig. 1. Morphology of silver citrate compounds prepared in different experimental conditions.

GCOGBD_2019_v12n2_47_f0002.png 이미지

Fig. 2. Morphology of silver citrate compounds prepared in different experimental conditions.

GCOGBD_2019_v12n2_47_f0003.png 이미지

Figure 3. Six different hydrogels (a-f) were prepared using 5 or 10% of polyvinyl alcohol (PVA) with 10, 20, or 40% polyethylene glycol (PEG). Hydrogels (a, b, and c) made with 5% PVA were so weak, regardless of PEG concentration, that they were easily torn by hand. Hydrogels (d, e, and f) containing 10% PVA did not tear as easily as hydrogels made with 5% PVA, but when the concentration of PEG reached 40%, they became too hard and were easily broken. The Young’s modulus, tensile strength, and percent elongation of the hydrogel were measured by a texture analyzer. (g) Representative stressstrain curve of hydrogels prepared with different PEG concentrations.

GCOGBD_2019_v12n2_47_f0004.png 이미지

Figure 4. (a) Average percent elongation and tensile strength and (b) gel fraction and swelling ratio depended on the PEG concentration.

GCOGBD_2019_v12n2_47_f0005.png 이미지

Figure 6. Clinical Rat Experiment.

GCOGBD_2019_v12n2_47_f0006.png 이미지

Figure 5. Cytotoxicity of bulk silver citrates and silver citrate nanorods in NIH3T3 and HS68 cells.

References

  1. H. Zhang, M. Wu, A. Sen, N. Cioffi(eds.), M. Rai (eds.), Nano-Antimicrobials: Progress and Prospects, Springer, Berlin, 2012. pp. 3.
  2. A. D. Russell, W. B. Hugo, G. P. Ellis (eds.), D. K. Luscombe (eds.), Progress in Medicinal Chemistry, Elsevier Science, New York, 1994. pp. 351-370.
  3. K. A. Strohfeldt, Essentials of Inorganic Chemistry, Wiley, New Jersey. 2014.
  4. J. W. Alexander, "History of the Medical Use of Silver", Surg. Infect., Vol. 10, p. 289, 2009. https://doi.org/10.1089/sur.2008.9941
  5. H. J. Klasen, "A Historical Review of the Use of Silver in the Treatment of Burns. II. Renewed Interest for Silver", Burns, Vol. 26, p. 131, 2000. https://doi.org/10.1016/S0305-4179(99)00116-3
  6. R. J. White, R. Cooper, "Silver sulphadiazine: A Review of the Evidence", Wounds UK, Vol. 1. p. 51, 2005.
  7. Z. M. Xiu, J. Ma, P. J. J. Alvarez, "Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions", Environ. Sci. Technol., Vol. 45, p. 9003, 2011. https://doi.org/10.1021/es201918f
  8. G. A. Sotiriou, S. E. Pratsinis, "Antibacterial Activity of Nanosilver Ions and Particles", Environ. Sci. Technol., Vol. 44, p. 5649, 2010. https://doi.org/10.1021/es101072s
  9. C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, C. M. Che, "Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles", J. Proteome. Res., Vol. 5, p. 916, 2006. https://doi.org/10.1021/pr0504079
  10. G. Lopez-Carballo, L. Higueras, R. Gavara, P. Hernandez-Munoz, "Silver Ions Release from Antibacterial Chitosan Films Containing in situ Generated Silver Nanoparticles", J. Agric. Food Chem., Vol. 61, p. 260, 2013. https://doi.org/10.1021/jf304006y
  11. Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, "Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles", Nano Lett., Vol. 12, p. 4271, 2012. https://doi.org/10.1021/nl301934w
  12. S. Djokic, "Synthesis and Antimicrobial Activity of Silver Citrate Complexes", Bioinorg. Chem. Appl., Vol. 2008, Article ID 436458, 2008.
  13. H. Kong, J. Jang, "Antibacterial Properties of Novel Poly(methyl methacrylate) Nanofiber Containing Silver Nanoparticles", Langmuir, Vol. 24, p. 2051, 2008. https://doi.org/10.1021/la703085e
  14. I. Sondi, B. Salopek-Sondi, "Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-negative Bacteria", J. Colloid. Interface Sci., Vol. 275, p. 177, 2004. https://doi.org/10.1016/j.jcis.2004.02.012
  15. B. Ajitha, Y. A. K. Reddy, P. S. Reddy, "Enhanced Antimicrobial Activity of Silver Nanoparticles with Controlled Particle Size by pH Variation", Powder Technol., Vol. 269, p. 110, 2015. https://doi.org/10.1016/j.powtec.2014.08.049
  16. H. Arakawa, J. F. Neault, H. A. Tajmir-Riahi, "Silver(I) Complexes with DNA and RNA Studied by Fourier Transform Infrared Spectroscopy and Capillary Electrophoresis", Biophys. J., Vol. 81, p. 1580, 2001. https://doi.org/10.1016/S0006-3495(01)75812-2
  17. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, "A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus", J. Biomed. Mater. Res., Vol. 52, p. 662, 2000. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  18. Jr. C. L. Fox, S. M. Modak, "Mechanism of Silver Sulfadiazine action on Burn Wound Infections", Antimicrob. Agents Chemother., Vol. 5, p. 582, 1974. https://doi.org/10.1128/AAC.5.6.582
  19. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman, "The Bactericidal Effect of Silver Nanoparticles", Nanotechnology, Vol. 16, p. 2346, 2005. https://doi.org/10.1088/0957-4484/16/10/059
  20. S. Pal, Y. K. Tak, J. M. Song, "Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-negative Bacterium Escherichia coli", Appl. Environ. Microbiol., Vol. 73, p. 1712, 2007. https://doi.org/10.1128/AEM.02218-06
  21. H. J. Jang, H. Yun, S. W. Oh, B. G. Jung, C. W. Lee, J. K. Lim, "Asymmetric Growth of Silver Citrate Compounds by Mechanical Stirring and Their Enhanced Antimicrobial Activity", Bull. Korean Chem. Soc., Vol.38, p. 1069, 2017. https://doi.org/10.1002/bkcs.11222
  22. S. L. Percival, S. M. McCarty, B. Lipsky, "Biofilms and Wounds: An Overview of the Evidence", Adv. Wound Care, Vol. 4, p. 373, 2015. https://doi.org/10.1089/wound.2014.0557
  23. M.Otto, "Molecular Basis of Staphylococcus epidermidis Infections", Semin. Immunopathol., Vol. 34, p. 201, 2012. https://doi.org/10.1007/s00281-011-0296-2
  24. J. P. O'Gara, H. Humphreys, "Staphylococcus Epidermidis Biofilms: Importance and Implications", J. Med. Microbiol., Vol. 50, p. 582, 2001. https://doi.org/10.1099/0022-1317-50-7-582
  25. E. O. Akinkunmi, O. I. Adeyemi, O. A. Igbeneghu, E. O. Olaniyan, A. E. Omonisi, A. Lamikanra, "The Pathogenicity of Staphylococcus Epidermidis on the Intestinal Organs of Rats and Mice:An Experimental Investigation", BMC Gastroenterol., Vol. 14, p. 126, 2014. https://doi.org/10.1186/1471-230X-14-126
  26. D. Mack, P. Becker, I. Chatterjee, S. Dobinsky, J. K. M. Knobloch, G. Peters, H. Rohde, M. Herrmann, "Mechanisms of Biofilm Formation in Staphylococcus Epidermidis and Staphylococcus Aureus: Functional Molecules, Regulatory Circuits, and Adaptive Responses", Int. J. Med. Microbiol., Vol. 294, p. 203, 2004. https://doi.org/10.1016/j.ijmm.2004.06.015
  27. V. Kostenko, J. Lyczak, K. Turner, R. J. Martinuzzi, "Impact of Silver-Containing Wound Dressings on Bacterial Biofilm Viability and Susceptibility to Antibiotics During Prolonged Treatment", Antimicrob. Agents Chemother., Vol. 54, p. 5120, 2010. https://doi.org/10.1128/aac.00825-10
  28. W. A. Sarhan, H. M. E. Azzazy, I. M. El-Sherbiny, "Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity", Adv. Mater. Interf., Vol. 8, p. 6379, 2016. https://doi.org/10.1021/acsami.6b00739
  29. V. T. Tchemtchoua, G. Atanasova, A. Aqil, P. Filee, N. Garbacki, O. Vanhooteghem, C. Deroanne, A. Noel, C. Jerome, B. Nusgens, Y. Poumay, A. Colige, "Development of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration", Biomacromolecules, Vol. 12, p. 3194, 2011. https://doi.org/10.1021/bm200680q
  30. A. Fahmy, E. A. Kamoun, R. El-Eisawy, E. M. El-Fakharany, T. H. Taha, B. K. El-Damhougy, F. Abdelhai, "Poly(vinyl alcohol)-Hyaluronic Acid Membranes for Wound Dressing Applications: Synthesis and in vitro Bio-Evaluations", J. Braz. Chem. Soc., Vol. 26, p. 1466, 2015.
  31. R. Jamie, L. Angelo, K. Allison, L. A. Brandon, E. K. Aimee, D. N. Joshua, A. J. J. Friedman, "Silver Sulfadiazine Retards Wound Healing in Mice via Alterations in Cytokine Expression", Investig. Dermatol., Vol. 135, p. 1459, 2015. https://doi.org/10.1038/jid.2015.21