DOI QR코드

DOI QR Code

Improvement of Low Speed Stability of CMG Gimbal Using Full-pitch Distributed Winding

전절권 분포형 권선을 통한 제어모멘트자이로 김블의 저속 안정성 개선 연구

  • Lee, Jun-yong (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Hun-jo (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Oh, Hwa-suk (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Song, Tae-Seong (LIGNEX1 Co. Ltd) ;
  • Kang, Jeong-min (LIGNEX1 Co. Ltd) ;
  • Song, Deok-ki (LIGNEX1 Co. Ltd) ;
  • Seo, Joong-bo (Defense Industry Technology Center, Agency for Defense Development)
  • 이준용 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이헌조 (한국항공대학교 항공우주 및 기계공학과) ;
  • 오화석 (한국항공대학교 항공우주 및 기계공학과) ;
  • 송태성 (LIG넥스원(주)) ;
  • 강정민 (LIG넥스원(주)) ;
  • 송덕기 (LIG넥스원(주)) ;
  • 서중보 (국방과학연구소)
  • Received : 2018.10.16
  • Accepted : 2019.06.03
  • Published : 2019.06.30

Abstract

The electromagnetic forces generate a torque on the gimbal motor, and changes in the coil current causes torque ripple. This affects the gimbals' speed and results to unstable satellite attitude. It is therefore essential to reduce the torque ripple of the gimble motor with the aim of improving the attitude control accuracy of the satellite. This paper theoretically analyzes the torque generated from the modeling of a motor for general concentrated winding and distributed winding. The prototype was designed and fabricated through selection of the winding that reduces the torque ripple through simulation results. The results of the magnetic fields' theoretical analysis and the back electromotive force of the prototype were compared with the calibrated results for verification of conformity and manufacture of the design. The low-speed test proved that the torque ripple is reduced by improving the speed stability.

전자기적 힘에 의해 김블 모터에 토크가 발생하며 코일 전류 변화는 토크 리플을 야기한다. 이는 김블속도에 영향을 주는 동시에 위성의 자세를 불안정하게 한다. 따라서 위성의 자세 제어 정확도 향상을 위해서는 김블 모터의 토크 리플 저감이 필수적이다. 본 논문에서는 일반적인 집중형 권선과 분포형 권선에 대해 모터의 모델링으로부터 발생 토크를 이론적으로 시뮬레이션 분석하였다. 토크 리플을 저감하는 권선을 선정하여 시제품을 설계 및 제작하여 자기장 및 역기전력의 이론적 해석 결과와 측정 결과를 비교하여 설계와 제작의 합치성을 확인하였다. 저속 시험을 통해 전절권 분포형 권선의 속도 안정도가 향상되어 토크 리플이 저감됨을 입증하였다.

Keywords

OJSSBW_2019_v13n3_1_f0001.png 이미지

Fig. 1 Full(left) and Short(right) Pitch Winding

OJSSBW_2019_v13n3_1_f0002.png 이미지

Fig. 2 66% Pitch Concentrated, 33%/66%/Full Pitch Distributed Coil Winding Concept

OJSSBW_2019_v13n3_1_f0003.png 이미지

Fig. 3 3 Phase Signal with Winding Type

OJSSBW_2019_v13n3_1_f0004.png 이미지

Fig. 4 CMG Gimbal Designed Model

OJSSBW_2019_v13n3_1_f0005.png 이미지

Fig. 5 Magnetic Analysis of Gimbal Rotor

OJSSBW_2019_v13n3_1_f0006.png 이미지

Fig. 6 Average Flux Density of Analysis

OJSSBW_2019_v13n3_1_f0007.png 이미지

Fig. 7 Back-EMF Analysis of Winding Types

OJSSBW_2019_v13n3_1_f0008.png 이미지

Fig. 8 Generating Torque Analysis of Winding Types

OJSSBW_2019_v13n3_1_f0009.png 이미지

Fig. 9 Prototype of CMG Gimbal

OJSSBW_2019_v13n3_1_f0010.png 이미지

Fig. 10 Concentrated(upper) Winding Coil and Distributed(lower) Winding Coil

OJSSBW_2019_v13n3_1_f0011.png 이미지

Fig. 11 Flux Density Measurements & Analysis

OJSSBW_2019_v13n3_1_f0012.png 이미지

Fig. 12 Back-emf Measurements & Analysis of Concentrated Winding

OJSSBW_2019_v13n3_1_f0013.png 이미지

Fig. 13 Back-emf Measurements & Analysis of Distributed Winding

OJSSBW_2019_v13n3_1_f0014.png 이미지

Fig. 14 Gimbal Motor Low Speed Test

OJSSBW_2019_v13n3_1_f0015.png 이미지

Fig. 15 Speed Fluctuation Measurements

OJSSBW_2019_v13n3_1_f0016.png 이미지

Fig. 16 Speed Fluctuation with Gimbal Angle

OJSSBW_2019_v13n3_1_f0017.png 이미지

Fig. 17 FFT of Speed Fluctuation

Table 1 Torque Comparison of Winding Type

OJSSBW_2019_v13n3_1_t0001.png 이미지

Table 2 Speed Stability Comparison of Winding Type

OJSSBW_2019_v13n3_1_t0002.png 이미지

References

  1. M. J. Sidi, "Spacecraft Dynamic and Control," Cambridge University Press, 1997.
  2. G. Kang, J. Hong and Gyutak, "A Novel Design of an Air-Core Type Permanent Magnet Linear Brushless Motor by Space Harmonics Field Analysis," IEEE Transactions on Magnetics vol. 37, pp. 3732-3736, 2001. https://doi.org/10.1109/20.952701
  3. J. Lee, "Gimbal Control Disturbance Modeling of Control Moment Gyro," Master's thesis, Korea Aerospace University, 2016.
  4. K. Kwon and S. Kim, "A Current control Strategy for Torque Ripple Reduction on Brushless DC Motor during Commutation.", Journal of Power Electrocis, 9(3), pp. 195-202, 2004.
  5. S. Park, T. Kim, B. Lee and D. Hyun, "A Current Control Algorithm for Torque Ripple Reduction of Four-Switch Three-Phase Brushless DC Motors," Journal of Power Electrocis, 9(2), pp. 126-133, 2004.
  6. J. Choi, S. Lee, K. Ko and S. Jang, "Improved Analytical Model for Electromagnetic Analysis of Axial Flux Machines With Double-Sided Permanent Magnet Rotor and Coreless Stator Windings," in IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 2760-2763, Oct. 2011. https://doi.org/10.1109/TMAG.2011.2151840
  7. J. Ahn, Y. Kim, Y. Kim and S. Jung, "Design and Characteristic Analysis of Coreless Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Systems," KIEE 44th Conference 2013, pp. 857-858. 2013
  8. K. Joo, S. Oh, S. Cho, H. Park, S. Won and J. Lee, "3-Leg Inverter Control for 2-Phase Outer Rotor Coreless Motor in Multi-D.O.F system," KIEE 47th Conference 2016, pp. 646-647, 2016.
  9. J. Lee, and H. Oh. "Verification of Torque Disturbance Modeling of CMG Gimbal and Its Torque Ripple Reduction using Feed-Forward Control," Journal of Aerospace System Engineering, pp. 27-34, 2018.
  10. S. John and C. M. Ong. "Modeling of electromechanical and electromagnetic disturbances in DC motors," Electromagnetic Compatibility, IEEE National Symposium on, 1989.
  11. Y. Mandel and G. Weiss, "Adaptive internal model based suppression of torque ripple in brushless DC motor derives," Systems Science and Control Engineering, vol.3, pp. 162-176, 2015. https://doi.org/10.1080/21642583.2014.999387
  12. N. Lakshmipriya, S. Manivel, and N. Sadeesh. "Modeling of SEPIC Fed PMBLDC motor for torque ripple minimization," International Journal of Research and Engineering: 10, 2015.
  13. F. Fang, X. Zhou, and G. Liu, "Instantaneous torque control of small inductance brushless dc motor," IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4952-4964, Dec. 2012. https://doi.org/10.1109/TPEL.2012.2193420
  14. J. Fang, X. Zhou and G. Liu, "Precise Accelerated Torque Control for Small Inductance Brushless DC Motor," IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1400-1412, March 2013. https://doi.org/10.1109/TPEL.2012.2210251
  15. C. Hwang, P. Li, F. C. Chuang, C. Liu and K. Huang, "Optimization for Reduction of Torque Ripple in an Axial Flux Permanent Magnet Machine," IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1760-1763, March 2009. https://doi.org/10.1109/TMAG.2009.2012811
  16. R. P. Praveen et al., "Optimal design of a surface mounted permanent-magnet BLDC motor for spacecraft applications," 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, 2011, pp. 413-419.
  17. Evangelos M. Tsampouris, Minos E. Beniakar and Antonios G. Kladas, "Geometry Optimization of PMSMs Comparing Full and Fractional Pitch Winding Configurations for Aerospace Actuation Applications," IEEE Transactions on Magnetics, vol.48, pp. 943-946, 2012. https://doi.org/10.1109/TMAG.2011.2174206
  18. Boldea and S. A. Nasar, "Linear Motion Electromagnetic Systems". John Wiley and Sons, 1985.
  19. Duane C. Hanselman, "Brushless Permanent Magnet Motor Design," Magna Phtsics Publishing, 2003.
  20. Skaar, S.E., Krovel, O., Nilssen, R.: "Distribution, coil span and winding factors for PM machines with concentrated windings," ICEM-2006, paper 346, Sept 2006