DOI QR코드

DOI QR Code

Pyrolysis Behavior of Pulverized Coal Particles at High Heating Rate

미분탄 입자의 고속가열 열분해거동 해석

  • Received : 2019.05.23
  • Accepted : 2019.06.30
  • Published : 2019.06.30

Abstract

The pyrolysis characteristics of pulverized coal particle was numerically analyzed with the drop tube furnace. Based on the simulated gas flow field in the drop tube furnace, the particle velocity, temperature and volatile evolution were calculated with the fourth order Runge-Kutta method. The effects of changes in reactor wall temperature and particle diameter on the pyrolysis behavior of coal particle were investigated. The particle heating rate was very sensitive to the reactor wall temperature and particle size, that is, the higher wall temperature and the smaller particle size resulted in the higher heating rate and the consequent quicker volatile evolution.

Keywords

SSONB2_2019_v30n3_260_f0001.png 이미지

Fig. 1. Schematic diagram of the present DTF system

SSONB2_2019_v30n3_260_f0002.png 이미지

Fig. 2. Axial gas velocity in the DTF reaction tube depending on the inlet condition

SSONB2_2019_v30n3_260_f0003.png 이미지

Fig. 3. Axial gas temperature in the DTF reaction tube depend-ing on the wall temperature

SSONB2_2019_v30n3_260_f0004.png 이미지

Fig. 4. Axial particle velocity in the DTF reaction tube at Tw=1,273 K depending on the particle diameter

SSONB2_2019_v30n3_260_f0006.png 이미지

Fig. 6. Particle residence time in the DTF reaction tube at Tw=1,273 K depending on the particle diameter

SSONB2_2019_v30n3_260_f0007.png 이미지

Fig. 7. Particle residence time in the DTF reaction tube at Tw=1,473 K depending on the particle diameter

SSONB2_2019_v30n3_260_f0008.png 이미지

Fig. 10. Volatile release of 70 μm coal particle in the DTF re-action tube at different wall temperatures

SSONB2_2019_v30n3_260_f0009.png 이미지

Fig. 11. Volatile release of 100 μm coal particle in the DTF re-action tube at different wall temperatures

SSONB2_2019_v30n3_260_f0010.png 이미지

Fig. 5. Axial particle velocity in the DTF reaction tube at Tw=1,473 K depending on the particle diameter

SSONB2_2019_v30n3_260_f0011.png 이미지

Fig. 8. Particle and gas temperature in the DTF reaction tube at Tw=1,273 K depending on the particle diameter

SSONB2_2019_v30n3_260_f0012.png 이미지

Fig. 9. Particle and gas temperature in the DTF reaction tube at Tw=1,473 K depending on the particle diameter

Table 1. Coal properties for experiment

SSONB2_2019_v30n3_260_t0001.png 이미지

References

  1. L. D. Smoot and M. D. Horton, "Propagation of laminar pulverised coal-air flames", Progress in Energy and Combustion Science, Vol. 3, No. 4, 1977, pp. 235-258, doi: https://doi.org/10.1016/0360-1285(77)90014-4.
  2. R. E Peck, R. A. Altenkirch, and K. C. Midkiff, "Fuel-Nitrogen Transformation in One -Dimensional Coal-Dust Flames", Combustion and Flame, Vol. 55, No. 3, 1984, pp. 331-340, doi: https://doi.org/10.1016/0010-2180(84)90172-X.
  3. J. Ma, T. H. Fletcher, and B. W. Webb, "Conversion of coal tar to soot during coal pyrolysis in a post-flame environment", Symposium (International) on Combustion, Vol. 26, No. 2, 1996, pp. 3161-3167, doi: https://doi.org/10.1016/S0082-0784(96)80161-5.
  4. D. Bradley, M. Lawes, M. J. Scott, and N. Usta, "The Structure of coal-air-$CH_4$ Laminar flames in a low-pressure burner: CARS measurements and modeling studies", Combustion and Flame, Vol. 124, No. 1-2, 2001, pp. 82-105, doi: https://doi.org/10.1016/S0010-2180(00)00186-3.
  5. D. W. Van Krevelen, C. Van Heerden, and F. J. Huntjens, "Physiochemical aspects of the pyrolysis of coal and related organic compounds", Fuel, Vol. 30, No. 11, 1951, pp. 253-259.
  6. D. B. Anthony, J. B. Howard, H. C. Hottel, and H. P. Meissener, "Rapid devolatilization of pulverized coal", Symposium (International) on Combustion, Vol. 15, No. 1, 1974, pp. 1303-1317, doi: https://doi.org/10.1016/S0082-0784(75)80392-4.
  7. H. Juntgen and K. H. Van Heek, "An update of german non-isothermal coal pyrolysis work", Fuel Processing Technology, Vol. 2, No. 4, 1979, pp. 261-293, doi: https://doi.org/10.1016/0378-3820(79)90018-3.
  8. S. Niksa, L. E. Heyd, W. B. Russel, and D. A. Saville, "On the role of heating rate in rapid coal devolatilization", Symposium (International) on Combustion, Vol. 20, No. 1, 1985, pp. 1445-1453, doi: https://doi.org/10.1016/S0082-0784(85)80637-8.
  9. M. A. Serio, D. G. Hamblen, J. R. Markham, and P. R. Solomom, "Kinetics of volatile product evolution in coal pyrolysis: experiment and theory", Energy Fuels, Vol. 1, No. 2, 1987, pp. 138-152, doi: https://doi.org/10.1021/ef00002a002.
  10. G. R. Johnson, P. Murdoch, and A. Williams, "A Study of the Mechanism of the Rapid Pyrolysis of Single Particles of Coal", Fuel, Vol. 67, N. 6, 1989, pp. 834-842, doi: https://doi.org/10.1016/0016-2361(88)90159-7.
  11. C. Park and J. P. Appleton, "Shock-tube measurement of soot oxidation rates", Combustion and Flame, Vol. 20, No. 3, 1973, pp. 369-379, doi: https://doi.org/10.1016/0010-2180(73)90029-1.
  12. M. A. Nettleton and R. Stirling, "The influence of additives on the burning of clouds of coal particles in shocked gases", Combustion and Flame, Vol. 22, No. 3, 1974, pp. 407-414, doi: https://doi.org/10.1016/0010-2180(74)90054-6.
  13. K. R. Doolan and J. C. Mackie, "Kinetics of rapid pyrolysis of a calcium-exchanged brown coal and of a calcium model compound", Symposium (International) on Combustion, Vol. 20, No. 1, 1985, pp. 1463-1469, doi: https://doi.org/10.1016/S0082-0784(85)80639-1.
  14. H. Kobayashi, J. B. Howard, and A. F. Sarofim, "Coal devolatilization at high temperatures", Symposium (International) on Combustion, Vol. 16, No. 1, 1977, pp. 411-425, doi: https://doi.org/10.1016/S0082-0784(77)80341-X.
  15. E. M. Suuberg, W. A. Peters, and J. B. Howard, "Product Compositions and Formation Kinetics in Rapid Pyrolysis of Pulverised Coal Implications for Combustion", Symposium (International) on Combustion, Vol. 17, No. 1, 1979, pp. 117-130, doi: https://doi.org/10.1016/S0082-0784(79)80015-6.
  16. A. W. Scaroni, P. L Walker Jr, and R. H. Essenhigh, "Kinetics of lignite pyrolysis in an entrained-flow, isothermal furnace", Fuel, Vol. 60, No 1, 1981, pp. 71-76, doi: https://doi.org/10.1016/0016-2361(81)90035-1.
  17. L. D. Tomothy, A. F. Sarofim, and J. M. Beer, "Characteristics of single particle coal combustion", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 1123-1130, doi: https://doi.org/10.1016/S0082-0784(82)80288-9.
  18. P. R. Solomon, M.A. Serio, R.M. Carangelo, and J.R. Markham, "Very rapid coal pyrolysis", Fuel, Vol65, 1986, pp. 182-190, doi: https://doi.org/10.1016/0016-2361(86)90005-0.
  19. B. C. Young, D. P. McCollar, B. J. Webeer, and M. L. Jones, "Temperature measurement of buelah char in a novel laminar flow reactor", Fuel, Vol. 67, No. 1, 1988, pp. 40-44, doi: https://doi.org/10.1016/0016-2361(88)90010-5.
  20. J. D. Freihaut, W. M. Procia, and D. J. Seery, "Chemical characteristics of tars produced in a novel low-severity, entrained-flow reactor", Energy Fuels, Vol. 3, No. 6, 1989, pp. 692-703, doi: https://doi.org/10.1021/ef00018a006.
  21. C. R. Monson, "Char oxidation at elevated pressure", Phd thesis, Brigham Young University, 1992.
  22. P. R. Solomon, M. A. Serio, and E. M. Suuberg, "Coal Pyrolysis: Experiments, Kinetic Rates and Mechanisms", Progress in Energy and Combustion Science, Vol. 18, No. 2, 1992, pp. 133-220, doi: https://doi.org/10.1016/0360-1285(92)90021-R.
  23. T. H. Fletcher, "Time-resolved temperature measurements of individual coal particles during devolatilization", Combust. Sci. and Tech., Vol. 63, No. 1-3, 1989, pp. 89-105, doi: https://doi.org/10.1080/00102208908947120.
  24. T. H. Fletcher, "Time-resolved particle temperature and mass loss measurements of bituminous coal during devolatilization", Combustion and Flame, Vol. 78, No. 2, 1989, pp. 223-236, doi: https://doi.org/10.1016/0010-2180(89)90127-2.
  25. R. J. Flaxman and W. L. H. Hallett, "Flow and particle heating in an entrained flow reactor", Fuel, Vol. 66, No 5, 1987, pp. 607-611, doi: https://doi.org/10.1016/0016-2361(87)90266-3.
  26. H. Y. Park, D. H. Park, Y. S. Shin, and G. K. Jeong, "Characterization of Particle Heating in Pressurized Drop Tube Furnace", The Korean Society for Energy, Korea, 1996, p. 129.
  27. S. V. Patankar, "Numerical heat transfer and fluid flow", McGraw-Hill, USA, 1979.
  28. S. Badzioch and P. G. W. Hawksley, "Kinetics of thermal decomposition of pulverised coal particles", Ind. Eng. Chem. Proc. Des. Dev., Vol. 9, No. 4, 1970, pp. 521-530, doi: https://doi.org/10.1021/i260036a005.
  29. D. Merrick, "Mathematical Models of the Thermal Decomposition of Coal 1. Evolution of volatile matter", Fuel, Vol. 62, No. 5, 1983, pp. 534-539, doi: https://doi.org/10.1016/0016-2361(83)90222-3.
  30. S. D. Kim, "Coal energy conversion technology", Minumsa, Korea, 1986.
  31. J. H. Jang, G. R. Han, G. S. Yoo, W. R. Lee, H. S. Lim, and H. Y. Park, "Numerical and experimental studies on devolatilizaton behavior of pulverized coal in a drop tube furnace", J. Korean Soc. Combust., Vol. 24, No. 2, 2019, pp. 34-40. https://doi.org/10.15231/jksc.2019.24.2.034