DOI QR코드

DOI QR Code

A Facile synthesis of CoS by Successive Ionic Layer Adsorption and Reaction (SILAR) Process for Supercapacitors

스테인리스강 기판에 연속 이온 층 흡착 및 반응 (SILAR) 공정을 통한 CoS 코팅 및 슈퍼캐패시터 전극 특성

  • Kim, Jaeseung (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Jaewon (Research Institute of Environmental Science & Technology, Kyungpook National University) ;
  • Kumbhar, Vijay S. (Research Institute of Environmental Science & Technology, Kyungpook National University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Kiyoung (Research Institute of Environmental Science & Technology, Kyungpook National University)
  • 김재승 (인하대학교 화학 및 화학공학 융합학과) ;
  • 이재원 (경북대학교 환경과학기술연구소) ;
  • ;
  • 최진섭 (인하대학교 화학 및 화학공학 융합학과) ;
  • 이기영 (경북대학교 환경과학기술연구소)
  • Received : 2019.05.18
  • Accepted : 2019.06.18
  • Published : 2019.06.30

Abstract

In this study, the cobalt sulfide (CoS) nanosheet on stainless steel as a supercapacitor electrode is synthesized by using a facile successive ionic layer adsorption reaction (SILAR) method. The number of cycles for dipping and rinsing can control the nanosheet thickness of CoS on stainless steel. Field emission-scanning electron microscopy (FE-SEM) showed a layer structure of CoS particles coupled as agglomeration. And x-ray diffraction (XRD) showed the crystallinity of the CoS nanosheet. To investigate the characteristics of the CoS nanosheet electrode as the supercapacitor, analysis of electrochemical measurement was conducted. Finally, the CoS nanosheet of 70cycles on stainless steel shows the specific capacitance ($44.25mF/cm^2$ at $0.25mA/cm^2$) with electrochemical stability of 78.5% over during 2000cycles.

Keywords

PMGHBJ_2019_v52n3_130_f0001.png 이미지

Fig. 1. Schematic of successive ionic layer adsorption and reaction (SILAR) system of CoS deposition onto stainless steel substrate

PMGHBJ_2019_v52n3_130_f0002.png 이미지

Fig. 2. Digital photographs of the (a) CoS-50, (b) CoS-60, (c) CoS-70, and (d) CoS-80 samples deposited onto stainless steel substrate

PMGHBJ_2019_v52n3_130_f0003.png 이미지

Fig. 3. FESEM images of the (a) CoS-50, (b) CoS-60, (c) CoS-70, and (d) CoS-80 samples deposited onto stainless steel substrate

PMGHBJ_2019_v52n3_130_f0004.png 이미지

Fig. 4. X-ray diffraction pattern of the CoS-70 sample

PMGHBJ_2019_v52n3_130_f0005.png 이미지

Fig. 5. CV curves of CoS nanosheet at constant 3 M KOH electrolyte according to scan rates (5 mV/s, 10 mV/s, 20 mV/s, 50 mV/s, and 100 mV/s); (a) 50 cycles; (b) 60 cycles; (c) 70 cycles (d) 80 cycles.

PMGHBJ_2019_v52n3_130_f0006.png 이미지

Fig. 6. Galvanostatic charge-discharge curves of the (a) CoS-50, (b) CoS-60, (c) CoS-70, and (d) and CoS-8-electrodes at various current densities, (e) variation of the specific capacitance of the CoS-70 electrode at various current densities and (c) cycling stability of the CoS-70 electrode for 2000 charge-discharge cycles at 0.5 mA/cm2 current density.

PMGHBJ_2019_v52n3_130_f0007.png 이미지

Fig. 7. Nyquist plots of CoS electrodes; (a) CoS-50, (b) CoS-60, (c) CoS-70, and (d) CoS-80; Rs-equivalent series resistance; Rct - charge transfer resistance; W - Warburg impedance factor; CPE - constant phase element.

Table 1. Fitted electrochemical impedance parameters of the CoS-70 electrode prepared with the 70 SILAR cycles

PMGHBJ_2019_v52n3_130_t0001.png 이미지

References

  1. J.C. Xing, Y.L. Zhu, M.Y. Li, Q.J. Jiao, Hierarchical mesoporous $CoS_2$ microspheres: Morphologycontrolled synthesis and their superior pseudocapacitive properties, Electrochimica Acta. 149 (2014) 285-292. https://doi.org/10.1016/j.electacta.2014.10.069
  2. X. Han, K. Tao, D. Wang, L. Han, Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors, Nanoscale. 10 (2018) 2735-2741. https://doi.org/10.1039/C7NR07931A
  3. H. Hu, B.Y. Guan, X.W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors, Chem. 1 (2016) 102-113. https://doi.org/10.1016/j.chempr.2016.06.001
  4. R. B. Pujari, A. C. Lokhande, J. H. Kim, C. D. Lokhande, Bath temperature controlled phase stability of hierarchical nanoflakes $CoS_2$ thin films for supercapacitor application, RSC Adv. 6 (2016) 40593-40601. https://doi.org/10.1039/C6RA06442F
  5. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Materials for Sustainable Energy. (2010) 148-159.
  6. Z. Yang, C.Y. Chen, H.T Chang, Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets, Journal of Power Sources. 196 (2011) 7874-7877. https://doi.org/10.1016/j.jpowsour.2011.03.072
  7. M. Liang, M. Zhao, H. Wang, Q. Zheng, X. Song, Superior cycling stability of a crystalline/amorphous $Co_3S_4$ core-shell heterostructure for aqueous hybrid supercapacitors, J. Mater. Chem. A. 6 (2018) 21350-21359. https://doi.org/10.1039/C8TA08135B
  8. H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Adv. Energy Mater. 1 (2011) 1036-1039. https://doi.org/10.1002/aenm.201100485
  9. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113(13) 2009 13103-13107. https://doi.org/10.1021/jp902214f
  10. L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983-5992. https://doi.org/10.1039/c000417k
  11. Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628-10643
  12. E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9 (2007) 1774-1785. https://doi.org/10.1039/b618139m
  13. K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Onestep hydrothermal synthesis of two-dimensional cobalt sulfide for high-performance supercapacitors, Mater. Lett. 131 (2014) 45-48. https://doi.org/10.1016/j.matlet.2014.05.148
  14. L. Yang, S. Cheng, Y. Ding, X. Zhu, Z.L. Wang, M. Liu, Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors, NanoLett. 12 (2012) 321-325. https://doi.org/10.1021/nl203600x
  15. J.C. Xing, Y.L. Zhu, Q.W. Zhou, X.D. Zheng, Q.J. Jiao, Fabrication and shape evolution of $CoS_2$ octahedrons for application in supercapacitors, Electrochimica Acta. 136 (2014) 550-556. https://doi.org/10.1016/j.electacta.2014.05.118
  16. Y. Pengfei, S. Lili, H. Xiangyu, X. Chuanhui, W. Haiying, W. Feng, Controlled synthesis of cobalt sulfide nanocrystalline by ultrasonic spray pyrolysis process, Rare Metal Materials and Engineering. 45(7) 2016 1700-1704. https://doi.org/10.1016/S1875-5372(16)30143-6
  17. Q. Lu, J.G. Chen, J.Q. Xiao, Nanostructured electrodes for high-performance pseudocapacitors, Angew. Chem. Int. Ed. 52 (2013) 52 1882-1889. https://doi.org/10.1002/anie.201203201
  18. M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices, Chem. Soc. Rev. 42 (2013) 2986-3017. https://doi.org/10.1039/c2cs35310e
  19. S.B. Kale, A.C. Lokhande, R.B. Pujari, C.D. Lokhande, Cobalt sulfide thin films for electrocatalytic oxygen evolution reaction and supercapacitor applications, Journal of Colloid and Interface Science 532 (2018) 491-499. https://doi.org/10.1016/j.jcis.2018.08.012
  20. F. Tao, Y.Q. Zhao, G.Q. Zhang, H.L. Li, Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors, Electrochemistry Communications. 9 (2007) 1282-1287. https://doi.org/10.1016/j.elecom.2006.11.022
  21. C.Y. Chen, Z.Y. Shih, Z. Yang, H.T. Chang, Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors, Journal of Power Sources. 215 (2012) 43-47. https://doi.org/10.1016/j.jpowsour.2012.04.075
  22. Y. Xue, Y. Chen, M.L. Zhang, Y.D. Yan, A new asymmetric supercapacitor based on ${\lambda}-MnO_2$ and activated carbon electrodes, Materials Letters. 62 (2008) 3884-3886. https://doi.org/10.1016/j.matlet.2008.05.014