DOI QR코드

DOI QR Code

Flow and Heat Transfer Analysis of Cooling Water in a Rotating Magnetron Cathode

회전형 마그네트론 음극의 냉각수 유동 및 열전달 해석

  • Joo, Junghoon (Department of Materials Science and Engineering Kunsan National University)
  • 주정훈 (군산대학교 공과대학 신소재공학과)
  • Received : 2019.06.19
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

We have developed a numerical model to analyze flow dynamics and heat transfer characteristics of the cooling water in a circular rotating magnetron cathode by a moving boundary grid method realized in a commercial multiphysics package, CFD-ACE+. The numerical model is composed of a target, dual mass rotating cathode and cooling water connections. When the inlet and outlet of the cooling water are offset by the same distance from the rotation axis, the temperature at the center is higher by $50^{\circ}C$ at maximum. At 5 mm away from the target surface, the temperature profile showed typical center high characteristic. At heat input of 30 kW, the maximum temperature change of the cooling water hits $6^{\circ}C$ within 0.5 sec under 60 rpm. With a cooling water configuration of center in/edge out, the temperature of the center region of the target gets lowered. Within 100 seconds of plasma operation time, the cooling water temperature keeps getting higher.

Keywords

PMGHBJ_2019_v52n3_171_f0001.png 이미지

Fig. 2. Commercial magnetron modules with a difference cooling water connection (a) central inlet (b) peripheral inlet.

PMGHBJ_2019_v52n3_171_f0002.png 이미지

Fig. 1. A numerical model of a rotating magnetron cathode.

PMGHBJ_2019_v52n3_171_f0003.png 이미지

Fig. 3. Schematic diagram of a commercial magnetron sputtering system with a heart type magnet array and electro magnets.

PMGHBJ_2019_v52n3_171_f0004.png 이미지

Fig. 4. Relative motion of magnet and balancing module to cooling water connection

PMGHBJ_2019_v52n3_171_f0005.png 이미지

Fig. 5. Simulated cooling water traces from (a) inlet (b) outlet at right angle position

PMGHBJ_2019_v52n3_171_f0006.png 이미지

Fig. 6. Simulated cooling water traces from (a) inlet (b) outlet at in-line position

PMGHBJ_2019_v52n3_171_f0007.png 이미지

Fig. 7. Calculated torque variation with rotation angle

PMGHBJ_2019_v52n3_171_f0008.png 이미지

Fig. 8. Heat flux with moving boundary condition

PMGHBJ_2019_v52n3_171_f0009.png 이미지

Fig. 10. Cooling water flow and heat transfer analysis results (a) steady state temperature profile (b) flow pattern of a cooling water (c) traces of cooling water from connection line.

PMGHBJ_2019_v52n3_171_f0010.png 이미지

Fig. 11. Simulated results at 30 kW input power and 60 rpm with cooling water flow rate 36.6 liter/min. (a) water flow velocity, (b) temperature.

PMGHBJ_2019_v52n3_171_f0011.png 이미지

Fig. 12. Used multi-track magnet array module showing heat affected surfaces of magnets and fixing guide.

PMGHBJ_2019_v52n3_171_f0012.png 이미지

Fig. 13. Water drop type magnetron and discharge affected target surface profile.

PMGHBJ_2019_v52n3_171_f0013.png 이미지

Fig. 14. Heat flux and temperature distribution of the two rotating modules (30 kW, 60 rpm, cooling water 1kgf/cm2 and 5 m/s.

PMGHBJ_2019_v52n3_171_f0014.png 이미지

Fig. 9. (a) Calculated transient temperature profile at 2.57 sec after ignition of plasma (b) temperature graph along radial cut line.

References

  1. M. Hur, D. Lee, S. Yang and H. Lee, Appl. Sci. Conv. Technol. 27 (2018) 14 https://doi.org/10.5757/ASCT.2018.27.1.14
  2. H. Choe, Appl. Sci. Conv. Technol. 26 (2015) 114 https://doi.org/10.5757/ASCT.2017.26.5.114
  3. D. Kwon and N. Yoon, Appl. Sci. Conv. Technol. 24 (2015) 237 https://doi.org/10.5757/ASCT.2015.24.6.237
  4. J. Joo, Appl. Sci. Conv. Technol. 23 (2014) 169 https://doi.org/10.5757/ASCT.2014.23.4.169
  5. J. Joo, Appl. Sci. Conv. Technol. 23 (2014) 145 https://doi.org/10.5757/ASCT.2014.23.3.145
  6. E. Kusano and N. Kikuchi, Thin Solid Films 634 (2017) 73 https://doi.org/10.1016/j.tsf.2017.05.014
  7. J. Joo, Appl. Sci. Conv. Technol. 23 (2014) 179 https://doi.org/10.5757/ASCT.2014.23.4.179
  8. V. I. Shapovalov, E. A. Minzhulina, Vacuum 161 (2019) 324 https://doi.org/10.1016/j.vacuum.2019.01.001
  9. J. Joo, J. Kor. Inst. Surf. Eng. 41 (2008) 274 https://doi.org/10.5695/JKISE.2008.41.6.274
  10. ESI corp. CFD-ACE 2017.5 User manual, 173
  11. J. Jee and J. Joo, J. Kor. Inst. Surf. Eng. 41 (2008) 94 https://doi.org/10.5695/JKISE.2008.41.3.094
  12. K. Steenbeck, Thin Solid Films, 123 (1985) 239 https://doi.org/10.1016/0040-6090(85)90164-6
  13. J. Choi and J. Joo, J. Kor. Inst. Surf. Eng. 45 (2012) 75 https://doi.org/10.5695/JKISE.2012.45.2.075