DOI QR코드

DOI QR Code

Foundation Properties of Cement Mortar in the Use of Fine Aggregate of Coal Gasification Slag

석탄가스화 용융슬래그를 잔골재로 활용하는 시멘트 모르타르의 기초적 특성

  • Park, Kyung-Taek (Department of Architectural Engineering, Cheong-ju University) ;
  • Han, Min-Cheol (Department of Architectural Engineering, Cheong-ju University) ;
  • Hyun, Seung-Yong (Department of Architectural Engineering, Cheong-ju University)
  • 박경택 (청주대학교 건축공학과, (주)삼표산업) ;
  • 한민철 (청주대학교 건축공학과) ;
  • 현승용 (청주대학교 건축공학과)
  • Received : 2019.04.08
  • Accepted : 2019.06.11
  • Published : 2019.06.30

Abstract

This study evaluated the properties of Coal gasification slag(CGS) according to the CGS contents of cement mortar condition as a basic step to examine the applicability of CGS as concrete fine aggregate. Flow increased with increasing CGS contents for both Crushed sand a(CSa) and Crushed sand b+Sea sand(CSb+SS), but the amount of air contents decreased to the opposite tendency. Based on 28 days is maximum compressive strength was obtained at CGS 50% when CSa was used and CGS 75% when CSb+SS. The flexural strength were the maximum at 25% and 50% of CGS, but the tendency was similar to the compressive strength. Compared with CSa, the compressive strength and flexural strength 5% higher than those of CSb+SS, in CGS using of were about 5% higher than those of unused CGS. As a result of comprehensive study on the quality of mortar according to the CGS contents, it can be concluded that when CGS is mixed with fine aggregate at about 50%, it can contribute to securing workability and strength development positively so that resource recycling and quality improvement can be achieved at the same time.

본 연구는 석탄가스화 용융슬래그(이하 CGS)를 콘크리트용 잔골재로의 활용성을 검토하기 위한 기초 단계로 시멘트 모르타르 조건에서 CGS 치환율에 따른 특성을 평가하였는데, 그 결과를 요약하면 다음과 같다. 플로는 양호한 품질의 부순 잔골재(이하 CSa) 및 불량 입도의 부순 잔골재와 해사를 혼합한 잔골재(이하 CSb+SS) 공히 CGS 치환율이 증가할수록 증가하였으나, 공기량은 반대의 경향으로 감소하였다. 압축강도는 CGS 치환율이 증가할수록 포물선의 경향을 보였으며, 재령 28일을 기준으로 CSa를 사용한 경우는 CGS 50%, CSb+SS를 사용한 경우는 CGS 75%에서 가장 높은 강도값을 나타내었다. 휨강도는 CGS 25% 및 50%에서 최대치를 나타냈으나 전반적으로는 압축강도와 유사한 경향으로 나타났다. 상호비교로서 CSb+SS와 대비하여 CSa에서 압축강도 및 휨강도가 약 5% 정도 높게 나타났으며, CGS 사용 유무에 따라서는 CGS를 사용하였을 때 높은 강도일수록 크게 나타났다. CGS 치환율에 따른 모르타르의 품질을 종합적으로 검토한 결과, CGS를 잔골재에 50% 전후로 혼합하여 사용한다면 유동성 확보 및 강도증진에 긍정적으로 기여하여 자원 재활용 및 품질향상을 동시에 도모할 수 있을 것으로 사료된다.

Keywords

GSJHDK_2019_v7n2_116_f0001.png 이미지

Fig. 1. Integrated Gasification Combined Cycle(IGCC)

GSJHDK_2019_v7n2_116_f0002.png 이미지

Fig. 2. Grain shape of CGS(×60)

GSJHDK_2019_v7n2_116_f0003.png 이미지

Fig. 3. Grading curve depending on different types of aggregate and CGS contents

GSJHDK_2019_v7n2_116_f0004.png 이미지

Fig. 4. Flow with fine aggregate type and CGS contents

GSJHDK_2019_v7n2_116_f0005.png 이미지

Fig. 5. Air contents with fine aggregate type and CGS contents

GSJHDK_2019_v7n2_116_f0006.png 이미지

Fig. 6. Compressive strength with fine aggregate type and CGS contents

GSJHDK_2019_v7n2_116_f0007.png 이미지

Fig. 7. Flexural strength with fine aggregate type and CGS contents

GSJHDK_2019_v7n2_116_f0008.png 이미지

Fig. 8. Correlation between fine aggregate types(CSa and CSb+SS)

GSJHDK_2019_v7n2_116_f0009.png 이미지

Fig. 9. Correlation between CGS with used and unused

Table 1. Experimental plan

GSJHDK_2019_v7n2_116_t0001.png 이미지

Table 2. Mixture proportions of mortar

GSJHDK_2019_v7n2_116_t0002.png 이미지

Table 3. Physical properties of cement

GSJHDK_2019_v7n2_116_t0003.png 이미지

Table 4. Physical properties of fine aggregate

GSJHDK_2019_v7n2_116_t0004.png 이미지

Table 5. Physical properties of CGS

GSJHDK_2019_v7n2_116_t0005.png 이미지

Table 6. Chemical composition

GSJHDK_2019_v7n2_116_t0006.png 이미지

Table 7. Harmful substances

GSJHDK_2019_v7n2_116_t0007.png 이미지

Table 8. Comprehensive analysis of quality rate

GSJHDK_2019_v7n2_116_t0008.png 이미지

References

  1. Han, C.G., Park, B.M. (2017). Analyzing the engineering properties of cement mortar using mixed aggregate with reject ash, Journal of the Korean Recycled Construction Resources Institute, 5(3), 247-252 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.3.247
  2. Han, M.C., Moon, B.Y. (2017). The effect of combinations of electric arc furnace slag and lime stone aggregates on engineering properties of ultra high strength concrete with 80MPa, Journal of the Korean Recycled Construction Resources Institute, 5(3), 253-260 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.3.253
  3. Kim, B.K., Lee, S.J., Chon, C.M., Choi, H.S. (2018). Potential of coal gasification slag as an alkali-activated cement, Journal of the Korea Institute of Resources Recycling, 27(2), 38-47 [in Korean]. https://doi.org/10.7844/KIRR.2018.27.2.38
  4. Kim, S.C. (2011). Ceramic Material and IGCC (Integrated Gasification Combined Cycle), News & Information for Chemical Engineers, 29(5), 600-604 [in Korean].
  5. Korea Agency for Technology and Standards. (2016). KS F 2527 (Concrete Aggregate), Korea Standard [in Korean].
  6. Ministry of Land, Infrastructure, and Transport. (2019). Aggregate Supply and Demand Plan [in Korean].
  7. Oh, S.H., Seo, C.H. (1997). An experimental study on the properties of concrete with replacement of fine aggregate by reject-ash, Architectural Institute of Korea, 17(2), 1311-1315.
  8. Woo, S.K., Kim, S.Y., Hong, K.S., Seo, D.W. (2010). CCS and IGCC (Integrated Gasification Combined Cycle), Ceramist, 13(2), 32-40 [in Korean].
  9. Yu, M.Y., Lee, J.Y., Chung, C.W. (2009). The property estimation of fine aggregate blended with natural, crushed, and recycled fine aggregate, Journal of the Architectural Institute of Korea Structure & Construction, 25(11), 113-120.