DOI QR코드

DOI QR Code

Analytical Study on Flexural Behavior of Alkali-Activated Slag-Based Ultra-High-Ductile Composite

알칼리활성 슬래그 기반 초고연성 복합재료의 휨거동 해석

  • Received : 2019.05.17
  • Accepted : 2019.06.26
  • Published : 2019.06.30

Abstract

The purpose of this study is to investigate analytically the flexural behavior of beam reinforced by an alkali-activated slag-based fiber-reinforced composite. The materials and mixture proportion were selected to manufacture an alkali-activated slag-based fiber-reinforced composite with high tensile strain capacity over 7% and compressive strength and tension tests were performed. The composite showed a compressive strength of 32.7MPa, a tensile strength of 8.43MPa, and a tensile strain capacity of 7.52%. In order to analyze the flexural behavior of beams reinforced by ultra-high-ductile composite, nonlinear sectional analysis was peformed for four types of beams. Analysis showed that the flexural strength of beam reinforced partially by ultra-high-ductile composite increased by 8.0%, and the flexural strength of beam reinforced fully by ultra-high-ductile composite increased by 24.7%. It was found that the main reason of low improvement in flexural strength is the low tensile strain at the bottom of beam. The tensile strain at bottom corresponding to the flexural strength was 1.38% which was 18.4% of tensile strain capacity of the composite.

이 연구의 목적은 알칼리활성 슬래그 기반 섬유보강 복합재료를 보 부재의 재료로 활용하였을 때 휨거동을 해석적으로 분석하는 것이다. 7% 이상의 초고연성이 나타날 수 있는 알칼리활성 슬래그 기반 섬유보강 복합재료를 제조하기 위하여 재료 및 배합을 선정하였고, 재료의 압축강도와 인장성능을 평가하였다. 복합재료는 압축강도 32.7MPa, 인장강도 8.43MPa, 인장변형성능 7.52%를 나타내었다. 초고연성 복합재료로 구성된 보의 휨거동을 분석하기 위하여 4가지 단면에 대하여 비선형 단면 층상화 방법을 사용하여 해석을 수행하였다. 해석결과 초고연성 복합재료로 부분적으로 보강된 경우 8.0%, 콘크리트가 복합재료로 전부 치환되어 전체 보강된 경우 24.7%의 휨강도 증진효과가 있는 것으로 나타났다. 휨강도 증진 효과가 크지 않은 이유는 인장 연단의 변형률이 최대 1.38%로 초고연성 복합재료의 인장변형성능의 18.4%밖에 되지 않기 때문인 것으로 나타났다.

Keywords

GSJHDK_2019_v7n2_158_f0001.png 이미지

Fig. 1. Uniaxial tensile behavior of UHD composite

GSJHDK_2019_v7n2_158_f0002.png 이미지

Fig. 2. Stress and strain curves of materials for flexural analysis: (a) full scale, (b) compressive behavior, and (c) tensile behavior

GSJHDK_2019_v7n2_158_f0003.png 이미지

Fig. 3. Sectional view of beams: (a) R-C, (b) R-C+UHD composite, (c) R-UHD composite, and (d) UHD composite(no bar)

GSJHDK_2019_v7n2_158_f0004.png 이미지

Fig. 4. Moment and curvature curves

GSJHDK_2019_v7n2_158_f0005.png 이미지

Fig. 5. Neutral axis

Table 1. Properties of slag

GSJHDK_2019_v7n2_158_t0001.png 이미지

Table 2. Properties of fiber

GSJHDK_2019_v7n2_158_t0002.png 이미지

Table 3. Mixture proportion

GSJHDK_2019_v7n2_158_t0003.png 이미지

Table 4. Flexural strength, strain, and neutral axis predicted by analysis

GSJHDK_2019_v7n2_158_t0004.png 이미지

References

  1. Choi, J.I., Song, K.I., Song, J.K., Lee, B.Y. (2016). Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites, Composite Structures, 138, 116-121. https://doi.org/10.1016/j.compstruct.2015.11.046
  2. JSCE. (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks(HPFRCC), Japan: Japan Society of Civil Engineers.
  3. Khan, M.I., Abbass, W. (2016). Flexural behavior of high-strength concrete beams reinforced with a strain hardening cement-based composite layer, Construction and Building Materials, 125, 927-935. https://doi.org/10.1016/j.conbuildmat.2016.08.132
  4. Kim, J.K., Kim, J.S., Ha, G.J., Kim, Y.Y. (2007). Tensile and fiber dispersion performance of ECC(engineered cementitious composites) produced with ground granulated blast furnace slag, Cement and Concrete Research, 37(7), 1096-1105. https://doi.org/10.1016/j.cemconres.2007.04.006
  5. Kim, J.K., Lee, T.G. (1992). Nonlinear analysis of reinforced concrete beams with softening, Computers & Structures, 44(3), 567-573. https://doi.org/10.1016/0045-7949(92)90389-H
  6. Kim, Y.Y., Kong, H.J., Li, V.C. (2003). Design of engineered cementitious composite suitable for wet-mixture shotcreting, ACI Materials Journal, 100(6), 511-518.
  7. Kim, Y.Y., Lee, B.Y., Bang, J.W., Han, B.C., Feo, L., Cho, C.G. (2014). Flexural performance of reinforced concrete beams strengthened with strain-hardening cementitious composite and high strength reinforcing steel bar, Composites Part B: Engineering, 56, 512-519. https://doi.org/10.1016/j.compositesb.2013.08.069
  8. Li, M., Li, V.C. (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites, Materials and Structures, 46(3), 405-420. https://doi.org/10.1617/s11527-012-9909-z
  9. Li, V.C. (2012). Tailoring ECC for special attributes: A review, International Journal of Concrete Structures and Materials, 6(3), 135-144. https://doi.org/10.1007/s40069-012-0018-8
  10. Li, V.C., Wang, S., Wu, C. (2001). Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite(PVA-ECC), ACI Materials Journal, 98(6), 483-492.
  11. Shin, S., Kim, K., Lim, Y. (2011). Strengthening effects of DFRCC layers applied to RC flexural members, Cement and Concrete Composites, 33(2), 328-333. https://doi.org/10.1016/j.cemconcomp.2010.09.001
  12. Xu, S.L., Cai, X.R. (2010). Experimental study and theoretical models on compressive properties of ultrahigh toughness cementitious composites, Journal of Materials in Civil Engineering, 22(10), 1067-1077. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000109
  13. Yang, E.H., Sahmaran, M., Yang, Y., Li, V.C. (2009). Rheological control in production of engineered cementitious composites, ACI Materials Journal, 106(4), 357-366.
  14. Zhang, J., Wang, Z., Ju, X., Shi, Z. (2014). Simulation of flexural performance of layered ECC-concrete composite beam with fracture mechanics model, Engineering Fracture Mechanics, 131, 419-438. https://doi.org/10.1016/j.engfracmech.2014.08.016
  15. Zhou, J., Pan, J., Leung, C.K. (2015). Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression, Journal of Materials in Civil Engineering(ASCE), 27(1), 04014111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001034