DOI QR코드

DOI QR Code

Study on the Granulation Behavior of TiO2-PVA Composite Powders Prepared Via Spray Drying Technique

  • Avcioglu, Celal (Istanbul Technical University, Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, PML Laboratories) ;
  • Ozkal, Burak (Istanbul Technical University, Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, PML Laboratories)
  • Received : 2019.03.14
  • Accepted : 2019.08.30
  • Published : 2019.09.30

Abstract

In this study, TiO2-polyvinyl alcohol (PVA) composite granules were prepared via spray drying technique. To investigate the effects of solid content and binder/powder ratio in the slurry on the granulation behavior of TiO2 powders, the feed compositions were designed to vary over a wide range. The morphology, actual densities, and average granule size and size distribution of the TiO2-PVA composite granules were characterized by using scanning electron microscopy technique, a gas pycnometer, and an image analyzing program (Image-J), respectively. The results indicate that solid content and the amount of PVA in the feedstock slurry are the dominant factors determining the granule morphology, size, and size distribution of TiO2-PVA composite. Moreover, it was observed that increasing the solid content and the amount of PVA in the slurry improved the granulation process and reduced the granule defects. For the preparation of spherical TiO2-PVA composite granules with the minimum amount of non-granulated powders, the optimized composition of the feedstock slurry was found to be 35 wt.% solid and 3 wt.% PVA.

Keywords

References

  1. V. N. Haynes, J. E. Ward, B. J. Russell, and A. G. Agrios, "Photocatalytic Effects of Titanium Dioxide Nanoparticles on Aquatic Organisms-Current Knowledge and Suggestions for Future Research," Aquat. Toxicol., 185 138-48 (2017). https://doi.org/10.1016/j.aquatox.2017.02.012
  2. M. Grishina, O. Bolshakov, A. Potemkin, and V. Potemkin, "Theoretical Investigation of Electron Structure and Surface Morphology of Titanium Dioxide Anatase Nano-Particles," Comput. Theor. Chem., 31 122-36 (2016).
  3. C. Uboldi, P. Urban, D. Gilliland, E. Bajak, E. Valsami-Jones, J. Ponti, and F. Rossi, "Role of the Crystalline form of Titanium Dioxide Nanoparticles: Rutile, and Not Anatase, Induces Toxic Effects in Balb/3T3 Mouse Fibroblasts," Toxicol. In Vitro, 31: 137-45 (2016). https://doi.org/10.1016/j.tiv.2015.11.005
  4. V. DeMatteis, M. Cascione, V. Brunetti, C. C. Toma, and R. Rinaldi, "Toxicity Assessment of Anatase and Rutile Titanium Dioxide Nanoparticles: The Role of Degradation in Different pH Conditions and Light Exposure," Toxicol. In Vitro, 37 201-10 (2016). https://doi.org/10.1016/j.tiv.2016.09.010
  5. Q. Chen, Q. Liu, J. Hubert, W. Huang, K. Baert, G. Wallaert, H. Terryn, M.-P. Delplancke-Ogletree, and F. Reniers, "Deposition of Photocatalytic Anatase Titanium Dioxide Films by Atmospheric Dielectric Barrier Discharge," Surf. Coat. Technol., 310 173-79 (2017). https://doi.org/10.1016/j.surfcoat.2016.12.077
  6. Q. Li and A. Du, "DFT Study of Electronic and Optical Properties of Anatase Titanium Dioxide Tuned by Nitrogen and Lithium Co-Doping," Solid State Commun., 228 22-6 (2016). https://doi.org/10.1016/j.ssc.2015.11.024
  7. W. F. Chen, P. Koshy, L. Adler, and C. C. Sorrell, "Photocatalytic Activity of V-doped $TiO_2$ Thin Films for the Degradation of Methylene Blue and Rhodamine B Dye Solutions," J. Aust. Ceram. Soc., 53 [2] 569-76 (2017). https://doi.org/10.1007/s41779-017-0068-0
  8. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis," Chem. Rev., 95 [1] 69-96 (1995). https://doi.org/10.1021/cr00033a004
  9. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, "Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., 95 [3] 735-58 (1995). https://doi.org/10.1021/cr00035a013
  10. M. Gordon and J. M. Guilemany, "Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review," J. Therm. Spray Technol., 23 [4] 577-93 (2014). https://doi.org/10.1007/s11666-014-0066-5
  11. F. L. Toma, G. Bertrand, D. Klein, C. Meunier, and S. Begin, "Development of Photocatalytic Active $TiO_2$ Surfaces by Thermal Spraying of Nanopowders," J. Nanomater., 2008 384171 (2008). https://doi.org/10.1155/2008/384171
  12. J. Bharathi and N. Pappayee, "Titanium Dioxide ($TiO_2$) Thin Film Based Gas Sensors," J. Chem. Pharm. Sci., 2014 59-61 (2014).
  13. J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, and G. Shao, "Dye-Sensitized Solar Cells Based on $TiO_2$ Nanoparticles/Nanobelts Double-Layered Film with Improved Photovoltaic Performance," Appl. Surf. Sci., 319 75-82 (2014). https://doi.org/10.1016/j.apsusc.2014.07.054
  14. N. Kumar, S. N. Hazarika, S. Limbu, R. Boruah, P. Deb, N. D. Namsa, and S. K. Das, "Hydrothermal Synthesis of Anatase Titanium Dioxide Mesoporous Microspheres and Their Antimicrobial Activity," Microporous Mesoporous Mater., 213 181-87 (2015). https://doi.org/10.1016/j.micromeso.2015.02.047
  15. M. S. Dominguez and C. R. Abreu, Nanocolloids: A Meeting Point for Scientists and Technologists; Elsevier, Amsterdam, 2016.
  16. R. S. Sabry, Y. K. Al-Haidarie, and M. A. Kudhier, "Synthesis and Photocatalytic Activity of $TiO_2$ Nanoparticles Prepared by Sol-Gel Method," J. Sol-Gel Sci. Technol., 78 [2] 299-306 (2016). https://doi.org/10.1007/s10971-015-3949-0
  17. M. Gell, E. H. Jordan, Y. H. Sohn, D. Goberman, L. Shaw, and T. D. Xiao, "Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings," Surf. Coat. Technol., 146-147 48-54 (2001). https://doi.org/10.1016/S0257-8972(01)01470-0
  18. M. Vicent, E. Sanchez, T. Molina, M. I. Nieto, and R. Moreno, "Comparison of Freeze Drying and Spray Drying to Obtain Porous Nanostructured Granules from Nanosized Suspensions," J. Eur. Ceram. Soc., 32 [5] 1019-28 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.034
  19. E. Sanchez, A. Moreno, M. Vicent, M. D. Salvador, V. Bonache, E. Klyatskina, I. Santacruz, and R. Moreno, "Preparation and Spray Drying of $Al_2O_3-TiO_2$ Nanoparticle Suspensions to Obtain Nanostructured Coatings by APS," Surf. Coat. Technol., 205 [4] 987-92 (2010). https://doi.org/10.1016/j.surfcoat.2010.06.002
  20. J. Zhou, H. Zhao, J. Wang, W. Qiao, D. Long, and L. Ling, "Scalable Preparation of Hollow Polymer and Carbon Microspheres by Spray Drying and Their Application in Low-Density Syntactic Foam," Mater. Chem. Phys., 181 150-58 (2016). https://doi.org/10.1016/j.matchemphys.2016.06.044
  21. L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, and Q. Zhang, "Systematic Optimization of Spray Drying for YAG Transparent Ceramics," J. Eur. Ceram. Soc., 35 [8] 2391-401 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.02.004
  22. A. Porowska, M. Dosta, L. Fries, A. Gianfrancesco, S. Heinrich, and S. Palzer, "Predicting the Surface Composition of a Spray-Driedparticle by Modelling Component Reorganization in a Drying Droplet," Chem. Eng. Res. Des., 110 131-40 (2016). https://doi.org/10.1016/j.cherd.2016.03.007
  23. W. Liu, X. D. Chen, and C. Selomulya, "On the Spray Drying of Uniform Functional Microparticles," Particuology, 22 1-12 (2015). https://doi.org/10.1016/j.partic.2015.04.001
  24. W. Liu, W. Zhang, J. Li, D. Zhang, and Y. Pan, "Preparation of Spray-Dried Powders Leading to Nd: YAG Ceramics: The Effect of PVB Adhesive," Ceram. Int., 38 [1] 259-64 (2012). https://doi.org/10.1016/j.ceramint.2011.06.061
  25. A. Schrijnemakers, S. Andre, G. Lumay, N. Vandewalle, F. Boschini, R. Cloots, and B. Vertruyen, "Mullite Coatings on Ceramic Substrates: Stabilisation of $Al_2O_3-SiO_2$ Suspensions for Spray Drying of Composite Granules Suitable for Reactive Plasma Spraying," J. Eur. Ceram. Soc., 29 [11] 2169-75 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.031
  26. S. J. Lukasiewicz, "Spray-Drying Ceramic Powders," J. Am. Ceram. Soc., 72 [4] 617-24 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06184.x
  27. L. P. Santana, D. R. R. Lazar, W. K. Yoshito, V. Ussui, and J. O. A. Paschoal, "Spray-Dried YSZ Ceramic Powders: Influence of Slurry Stability on Physical Characteristics of Agglomerates," Mater. Sci. Forum, 591-593 465-70 (2010). https://doi.org/10.4028/www.scientific.net/msf.591-593.465
  28. S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of Gases in Multimolecular Layers," J. Am. Chem. Soc., 60 [2] 309-19 (1938). https://doi.org/10.1021/ja01269a023
  29. A. Jena and K. Gupta, A Novel Technique for Surface Area and Particle Size Determination of Components of Fuel Cells and Batteries; Porous Materials Inc., 2008.
  30. J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, "The Image J Ecosystem: An Open Platform for Biomedical Image Analysis," Mol. Reprod. Dev., 82 [7-8] 518-29 (2015). https://doi.org/10.1002/mrd.22489
  31. B. Yu, Y. J. Feng, L. S. Wohn, C. Huang, Y. F. Li, and Z. Jia, "Spray-Drying of Alumina Powder for APS: Effect of Slurry Properties and Drying Conditions upon Particle Size and Morphology of Feedstock," Bull. Mater. Sci., 34 [7] 1653-61 (2011). https://doi.org/10.1007/s12034-011-0373-0
  32. G. Bertrand, P. Roy, C. Filiatre, and C. Coddet, "Spray-Dried Ceramic Powders: A Quantitative Correlation between Slurry Characteristics and Shapes of the Granules," Chem. Eng. Sci., 60 [1] 95-102 (2005). https://doi.org/10.1016/j.ces.2004.04.042

Cited by

  1. Microstructural observation of complex-shaped green ceramic compact and numerical simulation with special consideration on crack formation vol.47, pp.22, 2019, https://doi.org/10.1016/j.ceramint.2021.08.110